Skip to main content

Explicit Matrices with the Restricted Isometry Property: Breaking the Square-Root Bottleneck

  • Chapter
Compressed Sensing and its Applications

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

Abstract

Matrices with the restricted isometry property (RIP) are of particular interest in compressed sensing. To date, the best known RIP matrices are constructed using random processes, while explicit constructions are notorious for performing at the “square-root bottleneck,” i.e., they only accept sparsity levels on the order of the square root of the number of measurements. The only known explicit matrix which surpasses this bottleneck was constructed by Bourgain, Dilworth, Ford, Konyagin, and Kutzarova in Bourgain et al. (Duke Math. J. 159:145–185, 2011). This chapter provides three contributions to advance the groundbreaking work of Bourgain et al.: (i) we develop an intuition for their matrix construction and underlying proof techniques; (ii) we prove a generalized version of their main result; and (iii) we apply this more general result to maximize the extent to which their matrix construction surpasses the square-root bottleneck.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Since writing the original draft of this chapter, K. Ford informed the author that an alternative to the chirp selection method is provided in [7]. We leave the impact on ε 0 for future work.

References

  1. Applebaum, L., Howard, S.D., Searle, S., Calderbank, R.: Chirp sensing codes: deterministic compressed sensing measurements for fast recovery. Appl. Comput. Harmon. Anal. 26, 283–290 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bandeira, A.S., Dobriban, E., Mixon, D.G., Sawin, W.F.: Certifying the restricted isometry property is hard. IEEE Trans. Inf. Theory 59, 3448–3450 (2013)

    Article  MathSciNet  Google Scholar 

  3. Bandeira, A.S., Fickus, M., Mixon, D.G., Wong, P.: The road to deterministic matrices with the restricted isometry property. J. Fourier Anal. Appl. 19, 1123–1149 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Baraniuk, R., Davenport, M., DeVore, R., Wakin, M.: A simple proof of the restricted isometry property for random matrices. Constr. Approx. 28, 253–263 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bourgain, J., Garaev, M.Z.: On a variant of sum-product estimates and explicit exponential sum bounds in prime fields. Math. Proc. Camb. Philos. Soc. 146, 1–21 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bourgain, J., Glibichuk, A.: Exponential sum estimate over subgroup in an arbitrary finite field. http://www.math.ias.edu/files/avi/Bourgain_Glibichuk.pdf (2011)

  7. Bourgain, J., Dilworth, S.J., Ford, K., Konyagin, S.V., Kutzarova, D.: Breaking the k 2 barrier for explicit RIP matrices. In: STOC 2011, pp. 637–644 (2011)

    MathSciNet  Google Scholar 

  8. Bourgain, J., Dilworth, S.J., Ford, K., Konyagin, S., Kutzarova, D.: Explicit constructions of RIP matrices and related problems. Duke Math. J. 159, 145–185 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cai, T.T., Zhang, A.: Sharp RIP bound for sparse signal and low-rank matrix recovery. Appl. Comput. Harmon. Anal. 35, 74–93 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Casazza, P.G., Fickus, M.: Fourier transforms of finite chirps. EURASIP J. Appl. Signal Process. 2006, 7 p (2006)

    Google Scholar 

  11. DeVore, R.A.: Deterministic constructions of compressed sensing matrices. J. Complexity 23, 918–925 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fickus, M., Mixon, D.G., Tremain, J.C.: Steiner equiangular tight frames. Linear Algebra Appl. 436, 1014–1027 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Foucart, S., Rauhut, H.: A Mathematical Introduction to Compressive Sensing. Springer, Berlin (2013)

    Book  MATH  Google Scholar 

  14. Koiran, P., Zouzias, A.: Hidden cliques and the certification of the restricted isometry property. arXiv:1211.0665 (2012)

    Google Scholar 

  15. Mixon, D.G.: Deterministic RIP matrices: breaking the square-root bottleneck, short, fat matrices (weblog). http://www.dustingmixon.wordpress.com/2013/12/02/deterministic-rip-matrices-breaking-the-square-root-bottleneck/ (2013)

  16. Mixon, D.G.: Deterministic RIP matrices: breaking the square-root bottleneck, II, short, fat matrices (weblog). http://www.dustingmixon.wordpress.com/2013/12/11/deterministic-rip-matrices-breaking-the-square-root-bottleneck-ii/ (2013)

  17. Mixon, D.G.: Deterministic RIP matrices: breaking the square-root bottleneck, III, short, fat matrices (weblog). http://www.dustingmixon.wordpress.com/2014/01/14/deterministic-rip-matrices-breaking-the-square-root-bottleneck-iii/ (2013)

  18. Tao, T.: Open question: deterministic UUP matrices. What’s new (weblog). http://www.terrytao.wordpress.com/2007/07/02/open-question-deterministic-uup-matrices/ (2007)

  19. Tao, T., Vu, V.H.: Additive Combinatorics. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  20. Welch, L.R.: Lower bounds on the maximum cross correlation of signals. IEEE Trans. Inform. Theory 20, 397–399 (1974)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author thanks the anonymous referees for their helpful suggestions. This work was supported by NSF Grant No. DMS-1321779. The views expressed in this chapter are those of the author and do not reflect the official policy or position of the United States Air Force, Department of Defense, or the U.S. Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dustin G. Mixon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mixon, D.G. (2015). Explicit Matrices with the Restricted Isometry Property: Breaking the Square-Root Bottleneck. In: Boche, H., Calderbank, R., Kutyniok, G., Vybíral, J. (eds) Compressed Sensing and its Applications. Applied and Numerical Harmonic Analysis. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-16042-9_13

Download citation

Publish with us

Policies and ethics