Advertisement

The Biology of Immortality

  • H. G. StratmannEmail author
Chapter
Part of the Science and Fiction book series (SCIFICT)

Abstract

The desire for immortality or to at least live a very long time figures prominently in many legends and writings. The ancient Epic of Gilgamesh depicts that Sumerian king’s fruitless quest to live forever. Early chapters of the Bible describe many individuals living for centuries, up to Methuselah’s 969 years. In Greek mythology humans such as Tithonus could be granted immortality by Zeus, but they might live to regret that gift. (Eos, goddess of the dawn, asked Zeus to make her human lover, Tithonus, immortal. Unfortunately she neglected to request eternal youth for him too. Tithonus continued to age, eventually becoming senile and frail—in one version of the myth, even turning into a cicada—but could not die.). Jonathan Swift’s Gulliver’s Travels (1726) describes a similar fate for undying “struldbrugs” and the way their country of Luggnagg deals with them.

Keywords

Down Syndrome Telomere Length Aging Theory Senescent Cell Science Fiction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Zhang G, Li J, Purkayastha S, Tang Y, Zhang H, Yin Y, et al. Hypothalamic programming of systemic ageing involving IKK-beta, NF-kappaB and GnRH. Nature. 2013;497(7448):211–6.PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Kazachkova N, Ramos A, Santos C, Lima M. Mitochondrial DNA damage patterns and aging: revising the evidences for humans and mice. Aging Dis. 2013;4(6):337–50.PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Nemoto S, Finkel T. Ageing and the mystery at Arles. Nature. 2004;429:149–52.PubMedCrossRefGoogle Scholar
  4. 4.
    Hayflick L. The future of ageing. Nature. 2000;408:267–9.PubMedCrossRefGoogle Scholar
  5. 5.
    Brooks-Wilson AR. Genetics of healthy aging and longevity. Hum Genet. 2013;132(12):1323–38.PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Bianconi E, Piovesan A, Facchin F, Beraudi A, Casadei R, Frabetti F, et al. An estimation of the number of cells in the human body. Ann Hum Biol. 2013;40(6):463–71.PubMedCrossRefGoogle Scholar
  7. 7.
    Boraschi D, Aguado M, Dutel C, Goronzy J, Louis J, Grubeck-Loebenstein B, et al. The gracefully aging immune system. Sci Transl Med. 2013;5(185):185ps8.PubMedCrossRefGoogle Scholar
  8. 8.
    Montecino-Rodriguez E, Berent-Maoz B, Dorshkind K. Causes, consequences, and reversal of immune system aging. J Clin Invest. 2013;123(3):958–65.PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Niccoli T, Partridge L. Ageing as a risk factor for disease. Curr Biol. 2012;22(17): R741–52.PubMedCrossRefGoogle Scholar
  10. 10.
    Tchkonia T, Zhu Y, van Deursen J, Campisi J, Kirkland JL. Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. J Clin Invest. 2013;123(3):966–72.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Costa I, Carvalho H, Fernandes L. Aging, circardian rhythms and depressive disorders: a review. Am J Neurodegner Dis. 2013;2(4):228–46.Google Scholar
  12. 12.
    Deweerdt S. Looking for a master switch. Nature. 2012;492:S10–S1.PubMedCrossRefGoogle Scholar
  13. 13.
    Rare Whales Can Live to Nearly 200, Eye Tissue Reveals. 2006. http://news.nationalgeographic.com/news/2006/07/060713-whale-eyes.html. Accessed 15 April 2015.
  14. 14.
    Ohtani N, Hara E. Roles and mechanisms of cellular senescence in regulation of tissue homeostasis. Cancer Sci. 2013;104(5):525–30.PubMedCrossRefGoogle Scholar
  15. 15.
    Finkel T, Holbrook N. Oxidants, oxidative stress and the biology of ageing. Nature. 2000;408:239–47.PubMedCrossRefGoogle Scholar
  16. 16.
    Jones JH. Primates and the evolution of long, slow life histories. Curr Biol. 2011;21(18):R708–17.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Baudisch A, Vaupel JW. Evolution. Getting to the root of aging. Science. 2012;338(6107):618–9.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Boehm A, Khalturina K, Anton-Erxlebena F, Hemmricha G, Klostermeierb U, Lopez-Quinteroa J, et al. FoxO is a critical regulator of stem cell maintenance in immortal Hydra. Proc Natl Acad Sci. 2012;109(48):19697–702.PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Nebel A, Bosch T. Evolution of human longevity: lessons from Hydra. Aging. 2012;4(11):730–1.PubMedCentralPubMedGoogle Scholar
  20. 20.
    Reddien PW. Specialized progenitors and regeneration. Development. 2013;140(5):951–7.PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Scully T. To the limit. Nature. 2012;492:S2–S3.PubMedCrossRefGoogle Scholar
  22. 22.
    Life Expectancy Data by Country. http://apps.who.int/gho/data/node.main.688?lang=En-US. Accessed 15 April 2015.
  23. 23.
    Vaupel JW. Biodemography of human ageing. Nature. 2010;464(7288):536–42.PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Chung W, Dao R, Chen L, Hung S. The role of genetic variants in human longevity. Ageing Res Rev. 2010;9:S67–S78.PubMedCrossRefGoogle Scholar
  25. 25.
    Eisenstein M. Great expectations. Nature. 2012;492:S6–S8.PubMedCrossRefGoogle Scholar
  26. 26.
    Murabito JM, Yuan R, Lunetta KL. The search for longevity and healthy aging genes: insights from epidemiological studies and samples of long-lived individuals. J Gerontol A Biol Sci Med Sci. 2012;67(5):470–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Kenyon CJ. The genetics of ageing. Nature. 2010;464(7288):504–12.PubMedCrossRefGoogle Scholar
  28. 28.
    Moskalev AA, Smit-McBride Z, Shaposhnikov MV, Plyusnina EN, Zhavoronkov A, Budovsky A, et al. Gadd45 proteins: relevance to aging, longevity and age-related pathologies. Ageing Res Rev. 2012;11(1):51–66.PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Finkel T, Serrano M, Blasco MA. The common biology of cancer and ageing. Nature. 2007;448(7155):767–74.PubMedCrossRefGoogle Scholar
  30. 30.
    Rera M, Azizi MJ, Walker DW. Organ-specific mediation of lifespan extension: more than a gut feeling? Ageing Res Rev. 2013;12(1):436–44.PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Tissenbaum HA. Genetics, lifespan, health span, and the aging process in Caenorhabditis elegans. J Gerontol A Biol Sci Med Sci. 2012;67(5):503–10.PubMedCrossRefGoogle Scholar
  32. 32.
    Hansen M, Flatt T, Aguilaniu H. Reproduction, fat metabolism, and lifespan: what is the connection? Cell Metab. 2013;17(1):10–9.PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153(6):1194–217.PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Ayyadevara S, Tazearslan Ç, Bharill P, Alla R, Siegel E, Shmookler Reis R. Caenorhabditis elegans PI3K mutants reveal novel genes underlying exceptional stress resistance and lifespan. Aging Cell. 2009;8(6):706–25.PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Hekimi S, Guarente L. Genetics and the specificity of the aging process. Science. 2003;299(5611):1351–4.PubMedCrossRefGoogle Scholar
  36. 36.
    Guarente L, Kenyon C. Genetic pathways that regulate ageing in model organisms. Nature. 2000;408:255–62.PubMedCrossRefGoogle Scholar
  37. 37.
    McCubrey J, Demidenko Z. Recent discoveries in the cycling, growing and aging of the p53 field. Aging. 2012;4(12):887–93.PubMedCentralPubMedGoogle Scholar
  38. 38.
    Gems D, Partridge L. Genetics of longevity in model organisms: debates and paradigm shifts. Annu Rev Physiol. 2013;75:621–44.PubMedCrossRefGoogle Scholar
  39. 39.
    Bourzac K. Live long and prosper. Nature. 2012;492:S18–S20.PubMedCrossRefGoogle Scholar
  40. 40.
    Lapierre LR, Hansen M. Lessons from C. elegans: signaling pathways for longevity. Trends Endocrinol Metab. 2012;23(12):637–44.PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Bartke A. Healthy aging: is smaller better?—a mini-review. Gerontology. 2012;58(4):337–43.PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Barzilai N, Huffman DM, Muzumdar RH, Bartke A. The critical role of metabolic pathways in aging. Diabetes. 2012;61(6):1315–22.PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Blagosklonny MV. Revisiting the antagonistic pleiotropy theory of aging: TOR-driven program and quasi-program. Cell Cycle. 2010;9(16):3151–6.PubMedCrossRefGoogle Scholar
  44. 44.
    Harrison DE, Strong R, Sharp ZD, Nelson JF, Astle CM, Flurkey K, et al. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature. 2009;460(7253):392–5.PubMedCentralPubMedGoogle Scholar
  45. 45.
    Hughes KJ, Kennedy BK. Cell biology. Rapamycin paradox resolved. Science. 2012;335(6076):1578–9.PubMedCrossRefGoogle Scholar
  46. 46.
    Lamming DW, Ye L, Katajisto P, Goncalves MD, Saitoh M, Stevens DM, et al. Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity. Science. 2012;335(6076):1638–43.PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Lamming DW, Ye L, Sabatini DM, Baur JA. Rapalogs and mTOR inhibitors as anti-aging therapeutics. J Clin Invest. 2013;123(3):980–9.PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Smith K. A pill for longer life? 2009. http://www.nature.com/news/2009/090708/full/news.2009.648.html. Accessed 15 April 2015.
  49. 49.
    Kaeberlein M, Kapahi P. Cell signaling. Aging is RSKy business. Science. 2009;326(5949):55–6.PubMedCrossRefGoogle Scholar
  50. 50.
    Merksamer P, Liu Y, He W, Hirschey M, Chen D, Verdin E. The sirtuins, oxidative stress and aging: an emerging link. Aging. 2013;5(3):144–50.PubMedCentralPubMedGoogle Scholar
  51. 51.
    Abdellatif M. Sirtuins and pyridine nucleotides. Circ Res. 2012;111(5):642–56.PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Berman A, Leontieva O, Natarajan V, McCubrey J, Demidenko Z, Nikiforov M. Recent progress in genetics of aging, senescence and longevity: focusing on cancer-related genes. Oncotarget. 2012;3(12):1522–32.PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Poulsen MM, Jorgensen JO, Jessen N, Richelsen B, Pedersen SB. Resveratrol in metabolic health: an overview of the current evidence and perspectives. Ann N Y Acad Sci. 2013;1290:74–82.PubMedCrossRefGoogle Scholar
  54. 54.
    Sebastian C, Satterstrom FK, Haigis MC, Mostoslavsky R. From sirtuin biology to human diseases: an update. J Biol Chem. 2012;287(51):42444–52.PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Burnett C, Valentini S, Cabreiro F, Goss M, Somogyvari M, Piper MD, et al. Absence of effects of Sir2 overexpression on lifespan in C. elegans and Drosophila. Nature. 2011;477(7365):482–5.PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    Marchal J, Pifferi F, Aujard F. Resveratrol in mammals: effects on aging biomarkers, age-related diseases, and lifespan. Ann N Y Acad Sci. 2013;1290:67–73.PubMedCrossRefGoogle Scholar
  57. 57.
    Partridge L, Gems D. Benchmarks for ageing studies. Nature. 2007;450:165–7.PubMedCrossRefGoogle Scholar
  58. 58.
    Steves CJ, Spector TD, Jackson SH. Ageing, genes, environment and epigenetics: what twin studies tell us now, and in the future. Age Ageing. 2012;41(5):581–6.PubMedCrossRefGoogle Scholar
  59. 59.
    Coppede F. The epidemiology of premature aging and associated comorbidities. Clin Interv Aging. 2013;8:1023–32.PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Martin G, Oshima J. Lessons from human progeroid syndromes. Nature. 2000;408:263–6.PubMedCrossRefGoogle Scholar
  61. 61.
    Bonsall MB. Longevity and ageing: appraising the evolutionary consequences of growing old. Philos Trans R Soc Lond B Biol Sci. 2006;361(1465):119–35.PubMedCentralPubMedCrossRefGoogle Scholar
  62. 62.
    Bratic A, Larsson NG. The role of mitochondria in aging. J Clin Invest. 2013;123(3):951–7.PubMedCentralPubMedCrossRefGoogle Scholar
  63. 63.
    Calabrese E, Iavicoli I, Calabrese V. Hormesis: why it is important to biogerontologists. Biogerontology. 2012;13(3):215–35.PubMedCrossRefGoogle Scholar
  64. 64.
    Zhang Y, Tang ZH, Ren Z, Qu SL, Liu MH, Liu LS, et al. Hydrogen sulfide, the next potent preventive and therapeutic agent in aging and age-associated diseases. Mol Cell Biol. 2013;33(6):1104–13.PubMedCentralPubMedCrossRefGoogle Scholar
  65. 65.
    Kirkwood T, Austad S. Why do we age? Nature. 2000;408:233–8.PubMedCrossRefGoogle Scholar
  66. 66.
    Rando TA. Stem cells, ageing and the quest for immortality. Nature. 2006;441(7097):1080–6.PubMedCrossRefGoogle Scholar
  67. 67.
    Olshansky S, Passaro D, Hershow R, Layden J, Carnes B, Brody J, et al. A potential decline in life expectancy in the United States in the 21st century. N Engl J Med. 2005;352(11):1138–45.PubMedCrossRefGoogle Scholar
  68. 68.
    Gaziano J. Global burden of cardiovascular disease. In: Libby P, Bonow R, Mann D, Zipes D, Braunwald E, eds. Braunwald’s heart disease. 8th ed. United States: Saunders Elsevier; 2008. pp. 1–22.Google Scholar
  69. 69.
    Chan JS, Yan JH, Payne VG. The impact of obesity and exercise on cognitive aging. Front Aging Neurosci. 2013;5:97.PubMedCentralPubMedCrossRefGoogle Scholar
  70. 70.
    Older Persons’ Health: Health Care Utilization. 2014. http://www.cdc.gov/nchs/fastats/older-american-health.htm. Accessed 15 April 2015.
  71. 71.
    The National Nursing Home Survey: 2004 Overview. 2004. http://www.cdc.gov/nchs/data/series/sr_13/sr13_167.pdf. Accessed 15 April 2015.
  72. 72.
    Morley J. Scientific overview of hormone treatment used for rejuvenation. Fertil Steril. 2013;99(7):1807–13.PubMedCrossRefGoogle Scholar
  73. 73.
    Wade A, Ford I, Crawford G, McConnachie A, Nir T, Laudon M, et al. Nightly treatment of primary insomnia with prolonged release melatonin for 6 months: a randomized placebo controlled trial on age and endogenous melatonin as predictors of efficacy and safety. BMC Med. 2010;8:51.PubMedCentralPubMedCrossRefGoogle Scholar
  74. 74.
    Martano G, Bojaxhi E, Forsteniehner C, Huber N, Bresgen P, Eckl H. Validation and application of sub-2 micrometer core-shell UHPLC-UV-ESI-Orbitrap MS for identification and quantification of beta-carotene and selected cleavage products with preceding solid-phase extraction. Anal Bioanal Chem. 2014;406(12):2909–4.PubMedCentralPubMedCrossRefGoogle Scholar
  75. 75.
    Goodman G, Thornquist M, Balmes J, Cullen M, Meyskens F, Omenn G, et al. The beta-carotene and retinol efficacy trial: incidence of lung cancer and cardiovascular disease mortality during 6-year follow-up after stopping beta-carotene and retinol supplements. J Natl Cancer Inst. 2004;96(23):1743–50.PubMedCrossRefGoogle Scholar
  76. 76.
    Pruthi S, Allison T, Hensrud D. Vitamin E supplementation in the prevention of coronary artery disease. Mayo Clin Proc. 2001;76:1131–6.PubMedCrossRefGoogle Scholar
  77. 77.
    Swindell WR. Dietary restriction in rats and mice: a meta-analysis and review of the evidence for genotype-dependent effects on lifespan. Ageing Res Rev. 2012;11(2):254–70.PubMedCentralPubMedCrossRefGoogle Scholar
  78. 78.
    Colman RJ, Anderson RM, Johnson SC, Kastman EK, Kosmatka KJ, Beasley TM, et al. Caloric restriction delays disease onset and mortality in rhesus monkeys. Science. 2009;325(5937):201–4.PubMedCentralPubMedCrossRefGoogle Scholar
  79. 79.
    Mattison JA, Roth GS, Beasley TM, Tilmont EM, Handy AM, Herbert RL, et al. Impact of caloric restriction on health and survival in rhesus monkeys from the NIA study. Nature. 2012;489(7415):318–21.PubMedCrossRefGoogle Scholar
  80. 80.
    Redman L, Ravussin E. Caloric restriction in humans: impact on physiological, psychological, and behavioral outcomes. Antioxid Redox Signal. 2011;14:275–87.PubMedCentralPubMedCrossRefGoogle Scholar
  81. 81.
    Trepanowski JF, Canale RE, Marshall KE, Kabir MM, Bloomer RJ. Impact of caloric and dietary restriction regimens on markers of health and longevity in humans and animals: a summary of available findings. Nutr J. 2011;10:107.PubMedCentralPubMedCrossRefGoogle Scholar
  82. 82.
    Vijg J, Campisi J. Puzzles, promises and a cure for ageing. Nature. 2008;454(7208):1065–71.PubMedCentralPubMedCrossRefGoogle Scholar
  83. 83.
    Stewart TM, Bhapkar M, Das S, Galan K, Martin CK, McAdams L, et al. Comprehensive assessment of long-term effects of reducing intake of energy phase 2 (CALERIE Phase 2) screening and recruitment: methods and results. Contemp Clin Trials. 2013;34(1):10–20.PubMedCentralPubMedCrossRefGoogle Scholar
  84. 84.
    Mora F. Successful brain aging: plasticitiy, environmental enrichment, and lifestyle. Dialogues Clin Neurosci. 2013;15(1):45–52.PubMedCentralPubMedGoogle Scholar
  85. 85.
    Hughes V. Cultural differences. Nature. 2012;492:S14–S5.PubMedCrossRefGoogle Scholar
  86. 86.
    Min K, Lee C, Park H. The lifespan of Korean eunuchs. Curr Biol. 2012;18:792–3.CrossRefGoogle Scholar
  87. 87.
    Qian Y, Chen X. Senescence regulation by the p53 protein family. Methods Mol Biol. 2013;965:37–61.PubMedCentralPubMedCrossRefGoogle Scholar
  88. 88.
    Calado R, Young N. Telomere diseases. N Engl J Med. 2009; 361:2353–65.PubMedCentralPubMedCrossRefGoogle Scholar
  89. 89.
    DePinho R. The age of cancer. Nature. 2000;408:248–54.PubMedCrossRefGoogle Scholar
  90. 90.
    Pollard T, Earnshaw W, Lippincott-Schwartz J. Chromosome organization. In: ­Pollard T, Earnshaw W, Lippincott-Schwartz J, editors. Cell Biology. 2nd ed. Philadelphia: Saunders Elsevier; 2008. Pp. 193–208.Google Scholar
  91. 91.
    Kong CM, Lee XW, Wang X. Telomere shortening in human diseases. FEBS J. 2013;280(14):3180–93.PubMedCrossRefGoogle Scholar
  92. 92.
    Tumpel S, Rudolph KL. The role of telomere shortening in somatic stem cells and tissue aging: lessons from telomerase model systems. Ann N Y Acad Sci. 2012;1266:28–39.PubMedCrossRefGoogle Scholar
  93. 93.
    Nandakumar J, Cech TR. Finding the end: recruitment of telomerase to telomeres. Nat Rev Mol Cell Biol. 2013;14(2):69–82.PubMedCentralPubMedCrossRefGoogle Scholar
  94. 94.
    Herbig U, Ferreira M, Condel L, Sedivy J. Cellular senescence in aging primates. Science. 2006;311:1257.PubMedCrossRefGoogle Scholar
  95. 95.
    Aubert G, Lansdorp PM. Telomeres and aging. Physiol Rev. 2008;88(2):557–79.PubMedCrossRefGoogle Scholar
  96. 96.
    Babizhayev M, Savel’yeva E, Moskvina S, Yegorov Y. Telomere length is a biomarker of cumulative oxidative stress, biologic age, and an independent predictor of survival and therapeutic treatment requirement associated with smoking behavior. Am J Ther. 2011;18:209–26.CrossRefGoogle Scholar
  97. 97.
    Fyhrquist F, Saijonmaa O, Strandberg T. The roles of senescence and telomere shortening in cardiovascular disease. Nat Rev Cardiol. 2013;10(5):274–83.PubMedCrossRefGoogle Scholar
  98. 98.
    Njajou OT, Cawthon RM, Blackburn EH, Harris TB, Li R, Sanders JL, et al. Shorter telomeres are associated with obesity and weight gain in the elderly. Int J Obes (Lond). 2012;36(9):1176–9.CrossRefGoogle Scholar
  99. 99.
    Tzanetakou I, Katsilambros N, Benetos A, Mikhailidis D, Perrea D. “Is obesity linked to aging?”: adipose tissue and the role of telomeres. Ageing Res Rev. 2012;11:220–9.PubMedCrossRefGoogle Scholar
  100. 100.
    Armanios M. Telomeres and age-related disease: how telomere biology informs clinical paradigms. J Clin Invest. 2013;123(3):996–1002.PubMedCentralPubMedCrossRefGoogle Scholar
  101. 101.
    Hasty P, Christy BA. p53 as an intervention target for cancer and aging. Pathobiol Aging Age Relat Dis. 2013;3. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3794078/. Accessed 15 April 2015.
  102. 102.
    Li W, Vijg J. Measuring genome instability in aging—a mini-review. Gerontology. 2012;58(2):129–38.PubMedCentralPubMedCrossRefGoogle Scholar
  103. 103.
    Rufini A, Tucci P, Celardo I, Melino G. Senescence and aging: the critical roles of p53. Oncogene. 2013;32:5129–43.PubMedCrossRefGoogle Scholar
  104. 104.
    Strauss E. Cancer-stalling system accelerates aging. Science. 2002;295:28–9.PubMedCrossRefGoogle Scholar
  105. 105.
    Boccardi V, Herbig U. Telomerase gene therapy: a novel approach to combat aging. EMBO Mol Med. 2012;4:685–7.PubMedCentralPubMedCrossRefGoogle Scholar
  106. 106.
    de Jesus BB, Blasco MA. Potential of telomerase activation in extending health span and longevity. Curr Opin Cell Biol. 2012;24(6):739–43.PubMedCentralCrossRefGoogle Scholar
  107. 107.
    de Jesus BB, Vera E, Schneeberger K, Tejera A, Ayuso E, Bosch F, et al. Telomerase gene therapy in adult and old mice delays aging and increases longevity without increasing cancer. EMBO Mol Med. 2012;4:691–704.CrossRefGoogle Scholar
  108. 108.
    Barrett E, Richardson D. Sex differences in telomeres and lifespan. Aging Cell. 2011;10:913–21.PubMedCrossRefGoogle Scholar
  109. 109.
    Ben-Avraham D, Muzumdar RH, Atzmon G. Epigenetic genome-wide association methylation in aging and longevity. Epigenomics. 2012;4(5):503–9.PubMedCentralPubMedCrossRefGoogle Scholar
  110. 110.
    Johnson AA, Akman K, Calimport SR, Wuttke D, Stolzing A, de Magalhaes JP. The role of DNA methylation in aging, rejuvenation, and age-related disease. Rejuvenation Res. 2012;15(5):483–94.PubMedCentralPubMedCrossRefGoogle Scholar
  111. 111.
    Horvath S. DNA methylation age of human tissues and cell types. Genome Biol. 2013;14:R115.PubMedCentralPubMedCrossRefGoogle Scholar
  112. 112.
    Greer EL, Maures TJ, Ucar D, Hauswirth AG, Mancini E, Lim JP, et al. Transgenerational epigenetic inheritance of longevity in Caenorhabditis elegans. Nature. 2011;479(7373):365–71.PubMedCentralPubMedCrossRefGoogle Scholar
  113. 113.
    Mango S. Generations of longevity. Nature. 2011;479:302–3.PubMedCrossRefGoogle Scholar
  114. 114.
    Jellinger K, Attems J. Neuropathological approaches to cerebral aging and neuroplasticity. Dialogues in Clin Neurosci. 2013;15(1):29–43.Google Scholar
  115. 115.
    Sweatt JD. Neuroscience. Epigenetics and cognitive aging. Science. 2010;328(5979):701–2.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.SpringfieldUSA

Personalised recommendations