Advertisement

Telepathy, Using the Force, and Other Paranormal Abilities

  • H. G. StratmannEmail author
Chapter
Part of the Science and Fiction book series (SCIFICT)

Abstract

Characters with paranormal mental abilities are a staple of science fiction. The term “psi powers” has been used to describe such more-than-human talents as reading or controlling another person’s mind, using thoughts alone to move objects or instantaneously transport them (including one’s own body) from one place to another, and seeing into the future. Similarly the use of electronics or other technologies to produce such effects or augment a person’s natural capabilities has been dubbed “psionics.”

Keywords

Quantum State Dark Energy Radio Wave Quantum Teleportation Science Fiction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Lerner E. Alternate abilities: the paranormal. Analog Sci Fict Fact. 2014(June). pp. 19–28.Google Scholar
  2. 2.
    Herculano-Houzel S. The human brain in numbers: a linearly scaled-up primate brain. Front Hum Neurosci. 2009;3:31.PubMedCentralCrossRefPubMedGoogle Scholar
  3. 3.
    Roth G, Dicke U. Evolution of the brain and intelligence in primates. Prog Brain Res. 2012;195:413–30.CrossRefPubMedGoogle Scholar
  4. 4.
    Kandel E. Nerve cells and behavior. In: Kandel E, Schwartz J, Jessell T, editors. Principles of neural science. 3rd ed. New York: Appleton & Lange; 1991. pp. 18–32.Google Scholar
  5. 5.
    Smith SL, Smith IT, Branco T, Hausser M. Dendritic spikes enhance stimulus selectivity in cortical neurons in vivo. Nature. 2013;503(7474):115–20.CrossRefPubMedGoogle Scholar
  6. 6.
    Kennett R. Modern electroencephalography. J Neurol. 2012;259(4):783–9.CrossRefPubMedGoogle Scholar
  7. 7.
    Hari R, Salmelin R. Magnetoencephalography: from SQUIDs to neuroscience. Neuroimage 20th anniversary special edition. Neuroimage. 2012;61(2):386–96.CrossRefPubMedGoogle Scholar
  8. 8.
    Pei X, Hill J, Schalk G. Silent communication: toward using brain signals. IEEE Pulse. 2012;3:43–6.PubMedGoogle Scholar
  9. 9.
    Ayaz H, Onaral B, Izzetoglu K, Shewokis PA, McKendrick R, Parasuraman R. Continuous monitoring of brain dynamics with functional near infrared spectroscopy as a tool for neuroergonomic research: empirical examples and a technological development. Front Hum Neurosci. 2013;7:871.PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Bunce S, Izzetoglu M, Izzetoglu K, Onaral B, Pourrezaei K. Functional near-infrared spectroscopy. Eng Med Biol Mag IEEE. 2007;26(4):38–46.CrossRefGoogle Scholar
  11. 11.
    Kovac L. The 20 W sleep-walkers. EMBO Rep. 2010;11(1):2.PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    EMF. Electric and magnetic fields associated with the use of electric power. 2002. http://www.niehs.nih.gov/health/materials/electric_and_magnetic_fields_associated_with_the_use_of_electric_power_questions_and_answers_english_508.pdf. Accessed 15 April 2015.
  13. 13.
    Hameroff S. Consciousness, the brain, and spacetime geometry. Ann NY Acad Sci. 2001;929:74–104.CrossRefPubMedGoogle Scholar
  14. 14.
    Pfaff W, Hensen B, Bernien H, van Dam SB, Blok MS, Taminiau TH, et al. Unconditional quantum teleportation between distant solid-state quantum bits. Science. 2014;345:532–5. (1253512 Published online 29 May 2014)CrossRefPubMedGoogle Scholar
  15. 15.
    Lee KC, Sprague MR, Sussman BJ, Nunn J, Langford NK, Jin XM, et al. Entangling macroscopic diamonds at room temperature. Science. 2011;334(6060):1253–6.CrossRefPubMedGoogle Scholar
  16. 16.
    Electroreception in fish, amphibians and monotremes. http://www.mapoflife.org/topics/topic_41_Electroreception-in-fish-amphibians-and-monotremes/. Accessed 6 May 2015.
  17. 17.
    Albert JS, Crampton W. Chapter 12. Electroreception and electrogenesis. In: Lutz P, editor. The physiology of fishes. Boca Raton: CRC Press; 2006. pp. 429–70.Google Scholar
  18. 18.
    Pais-Vieira M, Lebedev M, Kunicki C, Wang J, Nicolelis MA. A brain-to-brain interface for real-time sharing of sensorimotor information. Sci Rep. 2013;3:1319.PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Berger A. Magnetic resonance imaging. Br Med J. 2002;324:35.CrossRefGoogle Scholar
  20. 20.
    Berry M, Geim A. Of flying frogs and levitrons. Eur J Phys. 1997;18:307–13.CrossRefGoogle Scholar
  21. 21.
    Liu Y, Zhu D, Strayer D, Israelsson U. Magnetic levitation of large water droplets and mice. Adv Sp Res. 2010;45(1):208–13.CrossRefGoogle Scholar
  22. 22.
    Villata M. CPT symmetry and antimatter gravity in general relativity. EPL (Europhys Lett). 2011;94(2):20001.CrossRefGoogle Scholar
  23. 23.
    Lightsaber. http://starwars.wikia.com/wiki/Lightsaber. Accessed 15 April 2015.
  24. 24.
    Bem DJ. Feeling the future: experimental evidence for anomalous retroactive influences on cognition and affect. J Pers Soc Psychol. 2011;100(3):407–25.CrossRefPubMedGoogle Scholar
  25. 25.
    Wheeler J. The “past” and the “delayed-choice” double-slit experiment. In: Marlow A, ed. Mathematical foundations of quantum theory. Massachusetts: Academic Press, Inc.; 1978.Google Scholar
  26. 26.
    Ma X, Kofler J, Qarry A, Tetik N, Scheidl T, Ursin R, et al. Quantum erasure with causally disconnected choice. Proc Natl Acad Sci U S A. 2013;110:1221–6.PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Kim Y-H, Yu R, Kulik SP, Shih Y, Scully MO. Delayed “choice” quantum eraser. Phys Rev Lett. 2000;84(1):1–5.CrossRefPubMedGoogle Scholar
  28. 28.
    Galak J, Leboeuf RA, Nelson LD, Simmons JP. Correcting the past: failures to replicate psi. J Pers Soc Psychol. 2012;103(6):933–48.CrossRefPubMedGoogle Scholar
  29. 29.
    Ritchie SJ, Wiseman R, French CC. Failing the future: three unsuccessful attempts to replicate Bem’s ‘retroactive facilitation of recall’ effect. PLoS ONE. 2012;7(3):e33423.PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Joyce N, Baker D. ESPecially intriguing. Monit Psychol. 2008;39(4):20.Google Scholar
  31. 31.
    Moir H, Jackson J, Windmill J. Extremely high frequency sensitivity in a ‘simple’ ear. Biol Lett. 2013;9:20130241.PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Takeda S, Mizuta T, Fuwa M, van Loock P, Furusawa A. Deterministic quantum teleportation of photonic quantum bits by a hybrid technique. Nature. 2013;500(7462):315–8.CrossRefPubMedGoogle Scholar
  33. 33.
    Steffen L, Salathe Y, Oppliger M, Kurpiers P, Baur M, Lang C, et al. Deterministic quantum teleportation with feed-forward in a solid state system. Nature. 2013;500(7462):319–22.CrossRefPubMedGoogle Scholar
  34. 34.
    Ralph T. Quantum communication: reliable teleportation. Nature. 2013;500:282–3.CrossRefPubMedGoogle Scholar
  35. 35.
    Ma XS, Herbst T, Scheidl T, Wang D, Kropatschek S, Naylor W, et al. Quantum teleportation over 143 kilometres using active feed-forward. Nature. 2012;489(7415):269–73.CrossRefPubMedGoogle Scholar
  36. 36.
    Pfaff W, Hensen B, Bernien H, van Dam S, Blok M, Taminiau T, et al. Unconditional quantum teleportation between distant solid-state quantum bits. Science. 2014;345(6196):532–5.Google Scholar
  37. 37.
    Penrose R. The entangled quantum world. The road to reality. New York: Vintage Books; 2004. pp. 578–608.Google Scholar
  38. 38.
    Griffiths D. Quantum mechanics in three dimensions. Introduction to quantum mechanics. New Jersey: Pearson Prentice Hall; 2005. pp. 143–212.Google Scholar
  39. 39.
    Griffiths D. Afterword. An introduction to quantum mechanics. New Jersey: Pearson Prentice Hall; 2005. pp. 432–46.Google Scholar
  40. 40.
    Penrose R. Quantum algebra, geometry, and spin. The road to reality. New York: Vintage Books; 2004:527–77.Google Scholar
  41. 41.
    Griffiths D. Identical particles. Introduction to quantum mechanics. New Jersey: Pearson; 2005. pp. 213–60.Google Scholar
  42. 42.
    Furusawa A, Sorensen R, Braunstein S, Fuchs C, Kimble H, Polzik E. Unconditional quantum teleportation. Science. 1998;282:706–9.CrossRefPubMedGoogle Scholar
  43. 43.
    UCLA’s ePhysics. Energy scales. http://ephysics.physics.ucla.edu/energy-scales-table. Accessed 6 May 2015.
  44. 44.
    Bianconi E, Piovesan A, Facchin F, Beraudi A, Casadei R, Frabetti F, et al. An estimation of the number of cells in the human body. Ann Hum Biol. 2013;40(6):463–71.CrossRefPubMedGoogle Scholar
  45. 45.
    Tipler PA, Llewellyn RA. Particle physics. Modern physics. 5th ed. Texas: W. H. Freeman and Company; 2008. pp. 561–618.Google Scholar
  46. 46.
    Thorne K. Black holes & time warps. New York: W. W. Norton & Company; 1995.Google Scholar
  47. 47.
    Halpern P. Cosmic wormholes. The search for interstellar shortcuts. London: Penguin Books; 1993.Google Scholar
  48. 48.
    Gilster P. Centauri dreams. Imagining and planning interstellar exploration. New York: Copernicus Books; 2004.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.SpringfieldUSA

Personalised recommendations