Advertisement

Suspended Animation: Putting Characters on Ice

  • H. G. StratmannEmail author
Chapter
Part of the Science and Fiction book series (SCIFICT)

Abstract

Suspended animation—the process of greatly slowing or stopping the body’s metabolic rate so a person does not age appreciably—has many uses in science fiction. Early stories such as Edward Bellamy’s Looking Backward: 2000–1887 (1887), H.G. Wells’s When the Sleeper Wakes (1899), the debut of Buck Rogers (cited above), and Laurence Manning’s The Man Who Awoke (1933) employed mysterious drugs, hypnosis, gases, or freezing to put characters into prolonged “sleep” for one-way time travel to the distant future. More recent science fiction, including Frederik Pohl’s novel The Age of the Pussyfoot (1969) and Larry Niven’s “The Defenseless Dead” (1973), have explored the social and political dimensions of dealing with the frozen dead-but-not-dead vividly described by the term used in those works, “corpsicle.”

Keywords

Hydrogen Sulfide Total Parenteral Nutrition Ground Squirrel Therapeutic Hypothermia Core Body Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Stratmann HG. Suspended animation: the cold facts. Analog Sci Fict Fact. 2000; 120(4) 43–55.Google Scholar
  2. 2.
    Bellamy R, Safar P, Tisherman SA, Basford R, Bruttig SP. Suspended animation for delayed resuscitation. Crit Care Med. 1996;24:S24–47.PubMedGoogle Scholar
  3. 3.
    Vreeland RH, Rosenzweig WD, Powers DW. Isolation of a 250 million-year-old halotolerant bacterium from a primary salt crystal. Nature. 2000;407:897–900.CrossRefPubMedGoogle Scholar
  4. 4.
    Cano RJ, Borucki MK. Revival and identification of bacterial spores in 25- to 40 million-year-old dominican amber. Science. 1995;268:1060–4.CrossRefPubMedGoogle Scholar
  5. 5.
    Murray AE, Kenig F, Fritsen CH, McKay CP, Cawley KM, Edwards R. Microbial life at − 13 °C in the brine of an ice-sealed Antarctic lake. Proc Natl Acad Sci U S A. 2012;109:20626–31.PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Storey KB, Storey JM. Metabolic rate depression and biochemical adaptation in anaerobiosis, hibernation and estivation. Q Rev Biol. 1990;65:145–74.CrossRefPubMedGoogle Scholar
  7. 7.
    Storey KB. Biochemistry of natural freeze tolerance in animals: molecular adaptations and applications to cryopreservation. Biochem Cell Biol. 1990:687–98.Google Scholar
  8. 8.
    Zancanaro C, Biggiogera M, Malatesta M. Mammalian hibernation: relevance to a possible human hypometabolic state. 2004. http://www.esa.int/gsp/ACT/doc/ARI/ARI Study Report/ACT-RPT-BIO-ARI-036501-Morpheus-Verona.pdf. Accessed 15 April 2015.
  9. 9.
    Costanzo JP, do Amaral MCF, Rosendale A, Lee RE Jr. Hibernation physiology, freezing adaptation and extreme freeze tolerance in a northern population of the wood frog. J Exp Biol. 2013;216:3461–73.CrossRefPubMedGoogle Scholar
  10. 10.
    Nedergaard J, Cannon B. Mammalian hibernation. Phil Trans R Soc Lond. 1990;326:669–86.CrossRefGoogle Scholar
  11. 11.
    Kilduff TS, Krilowicz B, Milsom WK, Trachsel L, Wang LCH. Sleep and mammalian hibernation: homologous adaptations and homologous processes? Sleep. 1993;16:372–86.PubMedGoogle Scholar
  12. 12.
    Kaciuba-Uscilko H, Greenleaf JE. Acclimatization to cold in humans. 1989. http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19890013690_1989013690.pdf. Accessed 15 April 2015.
  13. 13.
    Woodland Jumping Mouse. 2014. http://www.arkive.org/woodland-jumping-mouse/napaeozapus-insignis/. Accessed 15 April 2015.
  14. 14.
    Bouma HR, Verhaag EM, Otis JP, Heldmaier G, Swoap SJ, Strijkstra AM, et al. Induction of torpor: mimicking natural metabolic suppression for biomedical applications. J Cell Physiol. 2012;227:1285–90.CrossRefPubMedGoogle Scholar
  15. 15.
    Jinka TR, Toien O, Drew KL. Season primes the brain in an arctic hibernator to facilitate entrance into torpor mediated by adenosine A(1) receptors. J Neurosci. 2011;31(30):10752–8.PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Nelson BT, Ding X, Boney-Montoya J, Gerard RD, Kliewer SA, Andrews MT. Metabolic hormone FGF21 is induced in ground squirrels during hibernation but its overexpression is not sufficient to cause torpor. PLoS One. 2013;8:e53574. Accessed 6 May 2015.PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Bolling SF, Tramontini NL, Kilgore KS, Su T-P, Oeltgen PR, Harlow HH. Use of “natural” hibernation induction triggers for myocardial perfusion. Ann Thorac Surg. 1997;64:623–7.CrossRefPubMedGoogle Scholar
  18. 18.
    Berger RJ. Cooling down to hibernate: sleep and hibernation constitute a physiological continuum of energy conservation. Neurosci Lett. 1993;154:213–6.CrossRefPubMedGoogle Scholar
  19. 19.
    Storey KB. Organic solutes in freezing tolerance. Comp Biochem Physiol. 1997;117A(3):319–26.CrossRefGoogle Scholar
  20. 20.
    Vybiral S, Jansky L. Hibernation triggers and cryogens: do they play a role in hibernation? Comp Biochem Physiol. 1997;118A:1125–33.CrossRefGoogle Scholar
  21. 21.
    Jinka TR, Duffy LK. Ethical considerations in hibernation research. Lab Animal. 2013;42:248–52.CrossRefPubMedGoogle Scholar
  22. 22.
    Brown DJ, Brugger H, Boyd J, Paal P. Accidental hypothermia. N Engl J Med. 2012;367(20):1930–8.CrossRefPubMedGoogle Scholar
  23. 23.
    Giesbrecht GG, Bristow GK. Recent advances in hypothermia research. Ann N Y Acad Sci. 1997;813:663–75.CrossRefPubMedGoogle Scholar
  24. 24.
    Gilbert M, Busund R, Skagseth A, Nilsen P, Solbø J. Resuscitation from accidental hypothermia of 13.7 °C with circulatory arrest. Lancet. 2000;355:375–6.CrossRefPubMedGoogle Scholar
  25. 25.
    Niazi SA, Lewis FJ. Profound hypothermia in man. Report of a case. Ann Surg. 1958;147:264–6.PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    Dexter F, Kern FH, Hindman BJ, Greeley WJ. The brain uses mostly dissolved oxygen during profoundly hypothermic cardiopulmonary bypass. Ann Thorac Surg. 1997;63:1725–9.CrossRefPubMedGoogle Scholar
  27. 27.
    Neumar RW, Nolan JP, Adrie C, Aibiki M, Berg RA, Bottiger BW, et al. Post-cardiac arrest syndrome: epidemiology, pathophysiology, treatment, and prognostication. Circulation. 2008;118(23):2452–83.CrossRefPubMedGoogle Scholar
  28. 28.
    Vaagenes P, Ginsberg M, Ebmeyer U, Ernster L, Fischer M. Cerebral resuscitation from cardiac arrest: pathophysiologic mechanisms. Crit Care Med. 1996;24:S57–68.PubMedGoogle Scholar
  29. 29.
    Kochanek PM. Bakken lecture: the brain, the heart, and therapeutic hypothermia. Cleve Clin J Med. 2009;76(Suppl 2):S8–12.CrossRefPubMedGoogle Scholar
  30. 30.
    Marion DW, Leonov Y, Ginsberg M, Katz LM, Kochanek PM, Lechleuthner A. Resuscitative hypothermia. Crit Care Med. 1996;24:S81–9.PubMedGoogle Scholar
  31. 31.
    Arrich J, Holzer M, Herkner H, Müllner M. Hypothermia for neuroprotection in adults after cardiopulmonary arrest. 2010. http://www.ucdenver.edu/academics/colleges/medicalschool/departments/medicine/intmed/imrp/CURRICULUM/Documents/ArrichJ--HypothermiapCPR2010.pdf. Accessed 15 April 2015.
  32. 32.
    Kim F, Nichol G, Maynard C, Hallstrom A, Kudenchuk PJ, Rea T, et al. Effect of prehospital induction of mild hypothermia on survival and neurological status among adults with cardiac arrest: a randomized clinical trial. JAMA. 2014;311(1):45–52.CrossRefPubMedGoogle Scholar
  33. 33.
    Peberdy MA, Callaway CW, Neumar RW, Geocadin RG, Zimmerman JL, Donnino M, et al. Part 9: post-cardiac arrest care: 2010 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation. 2010;122(18 Suppl 3):S768–86.CrossRefPubMedGoogle Scholar
  34. 34.
    Tian DH, Wan B, Bannon PG, Misfeld M, Lemaire SA, Kazui T, et al. A meta-analysis of deep hypothermic circulatory arrest versus moderate hypothermic circulatory arrest with selective antegrade cerebral perfusion. Ann Cardiothorac Surg. 2013;2(2):148–58.PubMedCentralPubMedGoogle Scholar
  35. 35.
    Safar PJ, Tisherman SA. Suspended animation for delayed resuscitation. Curr Opin Anesthesiol. 2002;15:203–10.CrossRefGoogle Scholar
  36. 36.
    Behringer W, Safar P, Wu X, Kentner R, Radovsky A, Kochanek PM, et al. Survival without brain damage after clinical death of 60–120 min in dogs using suspended animation by profound hypothermia. Crit Care Med. 2003;31(5):1523–31.CrossRefPubMedGoogle Scholar
  37. 37.
    Torpor inducing transfer habitat for human stasis to Mars. 2014. http://www.nasa.gov/sites/default/files/files/NIAC_Torpor_Habitat_for_Human_Stasis.pdf. Accessed 6 May 2015.
  38. 38.
    Brumfield B. Sleeper spaceship could carry first humans to Mars in hibernation state. 2014. http://www.cnn.com/2014/10/07/tech/innovation/mars-hibernation-flight/. Accessed 15 April 2015.
  39. 39.
    Castren M, Nordberg P, Svensson L, Taccone F, Vincent JL, Desruelles D, et al. Intra-arrest transnasal evaporative cooling: a randomized, prehospital, multicenter study (PRINCE: Pre-ROSC IntraNasal Cooling Effectiveness). Circulation. 2010;122(7):729–36.CrossRefPubMedGoogle Scholar
  40. 40.
    Busch HJ, Eichwede F, Fodisch M, Taccone FS, Wobker G, Schwab T, et al. Safety and feasibility of nasopharyngeal evaporative cooling in the emergency department setting in survivors of cardiac arrest. Resuscitation. 2010;81(8):943–9.CrossRefPubMedGoogle Scholar
  41. 41.
    Johansson E, Hammarskjold F, Lundberg D, Arnlind MH. Advantages and disadvantages of peripherally inserted central venous catheters (PICC) compared to other central venous lines: a systematic review of the literature. Acta Oncol. 2013;52(5):886–92.CrossRefPubMedGoogle Scholar
  42. 42.
    Olveira G, Tapia MJ, Ocon J, Cabrejas-Gomez C, Ballesteros-Pomar MD, Vidal-Casariego A, et al. Parenteral nutrition-associated hyperglycemia in non-critically ill inpatients increases the risk of in-hospital mortality (multicenter study). Diabetes Care. 2013;36(5):1061–6.PubMedCentralCrossRefPubMedGoogle Scholar
  43. 43.
    Christensen LD, Rasmussen HH, Vinter-Jensen L. Peripherally inserted central catheter for use in home parenteral nutrition: a 4-year follow-up study. JPEN J Parenter Enteral Nutr. 2013;38(8):1003–6.CrossRefPubMedGoogle Scholar
  44. 44.
    Varon J, Marik PE, Einav S. Therapeutic hypothermia: a state-of-the-art emergency medicine perspective. Am J Emerg Med. 2012;30(5):800–10.CrossRefPubMedGoogle Scholar
  45. 45.
    Boullata JI, Gilbert K, Sacks G, Labossiere RJ, Crill C, Goday P, et al. A.S.P.E.N. clinical guidelines: parenteral nutrition ordering, order review, compounding, labeling, and dispensing. JPEN J Parenter Enteral Nutr. 2014;38(3):334–77.CrossRefPubMedGoogle Scholar
  46. 46.
    Berlana D, Barraquer A, Sabin P, Chicharro L, Perez A, Puiggros C, et al. Impact of parenteral nutrition standardization on costs and quality in adult patients. Nutr Hosp. 2014;30(2):351–8.PubMedGoogle Scholar
  47. 47.
    Raman M, Allard JP. Parenteral nutrition related hepato-biliary disease in adults. Appl Physiol Nutr Metab. 2007;32(4):646–54.CrossRefPubMedGoogle Scholar
  48. 48.
    Baudet S, Medina C, Vilaseca J, Guarner L, Sureda D, Andreu J, et al. Effect of short-term octreotide therapy and total parenteral nutrition on the development of biliary sludge and lithiasis. Hepatogastroenterology. 2002;49:609–12.PubMedGoogle Scholar
  49. 49.
    Anderson KB, Poloyac SM. Therapeutic hypothermia: implications on drug therapy; 2013. http://www.intechopen.com/books/therapeutic-hypothermia-in-brain-injury/therapeutic-hypothermia-implications-on-drug-therapy. Accessed 15 April 2015.
  50. 50.
    van den Broek MH, Groenendaal F, Egberts AG, Rademaker CA. Effects of hypothermia on pharmacokinetics and pharmacodynamics. Clin Pharmacokinet. 2010;49(5):277–94.CrossRefPubMedGoogle Scholar
  51. 51.
    Manola A, Geronilla GG, Kallur KR, Slim H, Lundbye J. The impact of therapeutic hypothermia on serum potassium. J Am Coll Cardiol. 2012;59(13s1):E62.CrossRefGoogle Scholar
  52. 52.
    Van Steirteghem A, Van den Abbeel E, Camus M, Devroey P. Cryopreservation of human embryos. Bailliere’s Clin Obstet Gynaecol. 1992;6:313–25.CrossRefGoogle Scholar
  53. 53.
    Horne G, Atkinson AD, Pease EH, Logue JP, Brison DR, Lieberman BA. Live birth with sperm cryopreserved for 21 years prior to cancer treatment: case report. Hum Reprod. 2004;19(6):1448–9.CrossRefPubMedGoogle Scholar
  54. 54.
    Edgar DH, Gook DA. A critical appraisal of cryopreservation (slow cooling versus vitrification) of human oocytes and embryos. Hum Reprod Update. 2012;18(5):536–54.CrossRefPubMedGoogle Scholar
  55. 55.
    Dowling-Lacey D, Mayer JF, Jones E, Bocca S. Live birth from a frozen–thawed pronuclear stage embryo almost 20 years after its cryopreservation. Fertil Steril. 2011;95:1120.CrossRefPubMedGoogle Scholar
  56. 56.
    Fahy GM, Wowk B, Wu J. Cryopreservation of complex systems: the missing link in the regenerative medicine supply chain. Rejuvenation Res. 2006;9:279–91.CrossRefPubMedGoogle Scholar
  57. 57.
    Watson CJ, Dark JH. Organ transplantation: historical perspective and current practice. Br J Anaesth. 2012;108 (Suppl 1):i29–42.CrossRefPubMedGoogle Scholar
  58. 58.
    Bianconi E, Piovesan A, Facchin F, Beraudi A, Casadei R, Frabetti F, et al. An estimation of the number of cells in the human body. Ann Hum Biol. 2013;40(6):463–71.CrossRefPubMedGoogle Scholar
  59. 59.
    Moore EB, Molinero V. Structural transformation in supercooled water controls the crystallization rate of ice. Nature. 2011;479(7374):506–8.CrossRefPubMedGoogle Scholar
  60. 60.
    Velikov V, Borick S, Angell CA. The glass transition of water, based on hyperquenching experiments. Science. 2001;294(5550):2335–8.CrossRefPubMedGoogle Scholar
  61. 61.
    Capaccioli S, Ngai KL. Resolving the controversy on the glass transition temperature of water? J Chem Phys. 2011;135:104504–1.CrossRefPubMedGoogle Scholar
  62. 62.
    Fahy GM, Wowk B, Pagotan R, Chang A, Phan J, Thomson B, et al. Physical and biological aspects of renal vitrification. Organogenesis. 2009;5(3):167–75.PubMedCentralCrossRefPubMedGoogle Scholar
  63. 63.
    Blackstone E, Morrison M, Roth MB. H2S induces a suspended animation-like state in mice. Science. 2005;308:518.CrossRefPubMedGoogle Scholar
  64. 64.
    Li RQ, McKinstry AR, Moore JT, Caltagarone BM, Eckenhoff MF, Eckenhoff RG, et al. Is hydrogen sulfide-induced suspended animation general anesthesia? J Pharmacol Exp Ther. 2012;341(3):735–42.PubMedCentralCrossRefPubMedGoogle Scholar
  65. 65.
    Mike Roth on mice and men and suspended animation. 2011. http://www.wired.com/business/2010/02/mark-roth-on-mice-and-men/. Accessed 15 April 2015.
  66. 66.
  67. 67.
    White RJ, Albin M, Yashon D. Neuropathological investigation of the transplanted canine brain. Transplant Proc. 1969;1:259–61.PubMedGoogle Scholar
  68. 68.
    White RJ, Wolin LR, Masspust LC, Taslitz N, Verdura J. Primate cephalic transplantation: neurogenic separation, vascular association. Transplant Proc. 1971;3:602–4.PubMedGoogle Scholar
  69. 69.
    Canavero S. HEAVEN: the head anastomosis venture project outline for the first human head transplantation with spinal linkage (GEMINI). Surg Neurol Int. 2013;4(Suppl 1):S335–42.PubMedCentralCrossRefPubMedGoogle Scholar
  70. 70.
    Tipler PA, Llewellyn RA. Chapters 1 and 2. Relativity I and II. In: Tipler PA, Llewellyn RA, editors. Modern physics. 5th edn. New York: W. H. Freeman and Company; 2008.Google Scholar
  71. 71.
    Brehm JJ, Mullin WJ. Introduction to the structure of matter. New York: Wiley; 1989.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.SpringfieldUSA

Personalised recommendations