Advertisement

Danger! Radiation!

  • H. G. StratmannEmail author
Chapter
Part of the Science and Fiction book series (SCIFICT)

Abstract

“Radiation” in science fiction can be used to kill, injure, or simply put characters at risk. Many stories and novels written during the first decades after Hiroshima, such as Walter M. Miller, Jr.’s novel A Canticle for Leibowitz (1960), depicted the deadly effects of radiation on humans and other life in the apocalyptic scenario of nuclear war. Even earlier, Robert A. Heinlein (using the pseudonym “Anson MacDonald”) in his 1940 story “Solution Unsatisfactory” depicted planes dropping radioactive dust on hostile cities to rapidly wipe out entire populations. Merely mentioning the word “radiation” in a science fiction work puts the reader on alert that dramatic and potentially terrible things could (and probably will) happen.

Keywords

Black Hole Solar Wind Coronal Mass Ejection Solar Flare Sperm Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Radiation. In: Parker SB, editor. Concise encylopedia of science & technology. New York: McGraw-Hill; 1997.Google Scholar
  2. 2.
    Walker J. Electromagnetic waves. Halliday & Resnick. Fundamentals of physics. 9th edn. Hoboken: Wiley, Inc.; 2011.Google Scholar
  3. 3.
    ISO 21348 Definitions of Solar Irradiance Spectral Categories. ftp://ftp.ngdc.noaa.gov/STP/SOLAR_DATA/SolarOnlineTemp/AIAA/SampleImages/ISO_DIS_21348_(E)_table1.pdf. Accessed 15 April 2015.
  4. 4.
    Scala RJ. Biological effects of ionizing radiation. In: Early PJ, Sodee DB, editors. Principles and practice of nuclear medicine. 2nd edn. St. Louis: Mosby-Year Book, Inc.; 1995. pp. 118–30.Google Scholar
  5. 5.
    Committee on the Evaluation of Radiation Shielding for Space Exploration NRC. Managing space radiation risk in the new era of space exploration. 2008. http://www.nap.edu/catalog.php?record_id=12045. Accessed 15 April 2015.
  6. 6.
    Planel H. Cosmic radiation. Space and life. An introduction to space biology and medicine. Boca Raton: CRC Press; 2004. pp. 121–40.Google Scholar
  7. 7.
    Stratmann HG, Nordley GD. Biological hazards and medical care in space (Part two). Analog Sci Fict Fact. 1998; 118(5):55–71.Google Scholar
  8. 8.
    Sources and Effects of Ionizing Radiation. Vol. 1. 2008. http://www.unscear.org/docs/reports/2008/09-86753_Report_2008_GA_Report_corr2.pdf. Accessed 15 April 2015.
  9. 9.
    Sources and Effects of Ionizing Radiation. Vol. 1. Scientific Annex. 2008. http://www.unscear.org/docs/reports/2008/09-86753_Report_2008_Annex_B.pdf. Accessed 15 April 2015.
  10. 10.
    Introduction to Ionizing Radiation. 2013. https://www.osha.gov/SLTC/radiationionizing/introtoionizing/ionizinghandout.html. Accessed 15 April 2015.
  11. 11.
    Buckey JC. Space physiology. New York: Oxford University Press; 2006.Google Scholar
  12. 12.
    Chapter 9. Radiation and radiobiology. In: Nicogossian AE, Huntoon CL, Pool SL, editors. Space physiology and medicine. 3rd edn. Malvern: Lea & Febiger; 1994.Google Scholar
  13. 13.
    Mcphee JC, Charles JB. Human health and performance risks of space exploration missions. 2009. http://ston.jsc.nasa.gov/collections/trs/_techrep/SP-2009-3405.pdf. Accessed 15 April 2015.
  14. 14.
    Chapter 2. Fallout from nuclear weapons. 2005. http://www.cdc.gov/nceh/radiation/fallout/default.htm. Accessed 15 April 2015.
  15. 15.
    Chapter 3. Estimation of doses from fallout. 2005. http://www.cdc.gov/nceh/radiation/fallout/default.htm. Accessed 15 April 2015.
  16. 16.
    Chapter 4. Potential health consequences from exposure of the United States population to radioactive fallout. 2005. http://www.cdc.gov/nceh/radiation/fallout/default.htm. Accessed 15 April 2015.
  17. 17.
    Nuclear detonation: weapons, improvised nuclear devices–radiation emergency medical management. 2013. http://www.remm.nlm.gov/nuclearexplosion.htm. Accessed 15 April 2015.
  18. 18.
    Planning guidance for response to a nuclear detonation. 2010. http://www.epa.gov/rpdweb00/docs/er/planning-guidance-for-response-to-nuclear-detonation-2-edition-final.pdf. Accessed 15 April 2015.
  19. 19.
    The terrestrial planets and their satellites. In: Encrenaz T, Bibring J-P, Blanc M, Barucci M-A, Roques F, Zarka P, eds. The solar system. 3rd edn. Berlin: Springer; 2010.Google Scholar
  20. 20.
    Committee on Solar and Space Physics and Committee on Solar-Terrestrial Research NRC. Radiation and the International Space Station: recommendations to reduce risk. 2000. http://www.nap.edu/openbook.php?record_id=9725. Accessed 15 April 2015.
  21. 21.
    Cosmic Rays. McGraw-Hill encyclopedia of astronomy. 2nd edn. New York: McGraw-Hill, Inc.; 1993.Google Scholar
  22. 22.
    Moldwin M. An introduction to space weather. New York: Cambridge University Press; 2008.Google Scholar
  23. 23.
    Stratmann HG. Space weather: the latest forecast. Analog Sci Fict Fact. 2012; 132(5):20–30.Google Scholar
  24. 24.
    Zeitlin C, Hassler DM, Cucinotta FA, Ehresmann B, Wimmer-Schweingruber RF, Brinza DE, et al. Measurements of energetic particle radiation in transit to Mars on the Mars Science Laboratory. Science. 2013;340(6136):1080–4.CrossRefPubMedGoogle Scholar
  25. 25.
    Jun I, Garrett HB. Comparison of high-energy trapped particle environments at the Earth and Jupiter. 2005. http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/37958/1/04-0913.pdf. Accessed 15 April 2015.
  26. 26.
    Chapter 5. The formation of stars. In: Green SF, Jones MH, editors. An introduction to the sun and stars. New York: Cambridge University Press; 2004.Google Scholar
  27. 27.
    Comins NF. Characterizing stars. Discovering the essential universe. 4th edn. New York: W. H. Freeman and Company; 2009; pp. 257–77.Google Scholar
  28. 28.
    Cuntz M, Guinan EF, Kurucz RL. Biological damage due to photospheric, chromospheric and flare radiation in the environments of main-sequence stars. 2010. http://arxiv.org/pdf/0911.1982v1.pdf. Accessed 15 April 2015.
  29. 29.
    Comins NF. The deaths of stars. Discovering the essential universe. 4th edn. New York: W. H. Freeman and Company; 2009;309–50.Google Scholar
  30. 30.
    Ellis J, Schramm DN. Could a nearby supernova explosion have caused a mass extinction? Proc Natl Acad Sci U S A. 1995;92:235–8.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Meszaros P. Gamma-ray bursts. 2006. http://arxiv.org/pdf/astro-ph/0605208v5.pdf. Accessed 15 April 2015.
  32. 32.
    Zhang B, Meszaros P. Gamma-ray bursts: progress, problems & prospects. 2008. http://arxiv.org/pdf/astro-ph/0311321.pdf. Accessed 15 April 2015.
  33. 33.
    Ackermann M, Ajello A, Asano K, Atwood W, Axelsson M, Baldini L, et al. Fermi-LAT observations of the gamma-ray burst GRB 130427 A. Science. 2014;343(6166):42–7.CrossRefPubMedGoogle Scholar
  34. 34.
    Melott AL, Lieberman BS, Laird CM, Martin LD, Medvedev MV, Thomas BC, et al. Did a gamma-ray burst initiate the late Ordovician mass extinction? 2004. http://arxiv.org/pdf/astro-ph/0309415.pdf. Accessed 15 April 2015.
  35. 35.
    Globus A, Arora N, Bajoria A, Straut J. The Kalpana One orbital space settlement. Revised. http://alglobus.net/NASAwork/papers/2007KalpanaOne.pdf.

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.SpringfieldUSA

Personalised recommendations