Advertisement

Space Medicine: Paging Dr. McCoy

  • H. G. StratmannEmail author
Chapter
Part of the Science and Fiction book series (SCIFICT)

Abstract

Practicing space medicine can be easy in science fiction. As illustrated early in The Empire Strikes Back (1980), injuries inflicted by hungry wampas respond well to merely immersing the victim in a bacta tank. As noted in Chap. 2, the coffin-like autodoc machines depicted in Ringworld (1970) and other works by Larry Niven provide the most complex medical care with little aid from flesh-and-blood medical personnel. The glossy high-tech equipment and spacious facilities located on large Federation starships such as the Enterprise in its various incarnations put to shame modern-day emergency rooms and surgical suites. Future humans might be genetically engineered to be more resilient to damage and heal more rapidly, or treated by injecting molecular-sized nanobots (See Chap. 11) that immediately go to work detecting and repairing body cells and organs. Physicians and nurses could routinely meet the challenges of managing the medical needs of exotic aliens such as those depicted in James White’s “Sector General” stories and novels.

Keywords

Medical Personnel International Space Station Chest Compression Science Fiction Parabolic Flight 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Buckey JC. Space physiology. Oxford: Oxford University Press; 2006.Google Scholar
  2. 2.
    Hamilton D, Smart K, Melton S, Polk J, Johnson-Throop K. Autonomous medical care for exploration class space missions. 2007. http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20070032039.pdf. Accessed 15 April 2015.
  3. 3.
    Sargsyan A. Medical imaging. In: Barratt M, Pool SL, editors. Principles of clinical medicine for space flight. Berlin: Springer; 2008. p. 181–207.CrossRefGoogle Scholar
  4. 4.
    Gray G, Johnston S. Medical evaluations and standards. In: Barratt M, Pool SL, editors. Principles of clinical medicine for space flight. Berlin: Springer; 2008. p. 59–67.CrossRefGoogle Scholar
  5. 5.
    Marshburn T. Acute care. In: Barratt M, Pool SL, editors. Principles of clinical medicine for space flight. Berlin: Springer; 2008. p. 101–22.CrossRefGoogle Scholar
  6. 6.
    Hamilton D, Scheuring R, Jones J. Right lower quadrant abdominal pain in a female crewmember on the International Space Station. Aviat Sp Environ Med. 2007;78(Suppl. 4):A89–98.Google Scholar
  7. 7.
    Clément G. Fundamentals of space medicine. 2nd ed. Berlin: Springer; 2011.CrossRefGoogle Scholar
  8. 8.
    Clark J, Allen C. Acoustics issues. In: Barratt M, Pool SL, editors. Principles of clinical medicine for space flight. Berlin: Springer; 2008. p. 521–33.CrossRefGoogle Scholar
  9. 9.
    Smith S, Nixon C. Vibration, noise, and communication. In: De Hart RL, Davis JR, editors. Fundamentals of aerospace medicine. 3rd ed. Philadelphia: Lippincott Williams & Wilkins; 2002. p. 154–83.Google Scholar
  10. 10.
    Taddeo T, Armstrong C. Spaceflight medical systems. In: Barratt M, Pool SL, editors. Principles of clinical medicine for space flight. Berlin: Springer; 2008. p. 69–100.CrossRefGoogle Scholar
  11. 11.
    Stewart L, Trunkey D, Rebagliati S. Emergency medicine in space. J Emerg Med. 2007;32(1):45–54.CrossRefPubMedGoogle Scholar
  12. 12.
    Putcha L, Pool SL, Cintrón N. Pharmacology. In: Nicogossian AE, Huntoon CL, Pool SL, editors. Space physiology and medicine. 3rd ed. Philadelphia: Lea & Febiger; 1993. p. 435–46.Google Scholar
  13. 13.
    Graebe A, Schuck E, Lensing P, Putcha L, Derendorf H. Physiological, pharmacokinetic, and pharmacodynamic changes in space. J Clin Pharmacol. 2004;44(8):837–53.CrossRefPubMedGoogle Scholar
  14. 14.
    Kirkpatrick A, Jones J, Sargsyan A, Hamilton D, Melton S, Beck G, et al. Trauma sonography for use in microgravity. Aviat Sp Environ Med. 2007;78(Suppl. 4):A38–42.Google Scholar
  15. 15.
    Kirkpatrick A, Campbell M, Jones J, Broderick T, Ball C, McBeth P, et al. Extraterrestrial hemorrhage control: terrestrial developments in technique, technology, and philosophy with applicability to traumatic hemorrhage control in long-duration spaceflight. J Am Coll Surg. 2005;200(1):64–76.CrossRefPubMedGoogle Scholar
  16. 16.
    Drudi L, Ball C, Kirkpatrick A, Saary J, Grenon S. Surgery in space: where are we at now? Acta Astronautica. 2102;79:61–6.Google Scholar
  17. 17.
    Simmons S, Hamilton D, McDonald PV. Telemedicine. In: Barratt M, Pool SL, editors. Principles of clinical medicine for space flight. Berlin: Springer; 2008. p. 163–79.CrossRefGoogle Scholar
  18. 18.
    Cermack M. Monitoring and telemedicine support in remote environments and in human space flight. Br J Anaesth. 2006;97(1):107–14.CrossRefPubMedGoogle Scholar
  19. 19.
    Campbell M, Billica R. Surgical capabilities. In: Barratt M, Pool SL, editors. Principles of clinical medicine for space flight. Berlin: Springer; 2008. p. 123–37.CrossRefGoogle Scholar
  20. 20.
    Johnston S, Arenare B, Smart K. Medical evacuation and vehicles for transport. In: Barratt M, Pool SL, editors. Principles of clinical medicine for space flight. Berlin: Springer; 2008. p. 139–61.CrossRefGoogle Scholar
  21. 21.
    Stepaniak P, Hamilton G, Olson J, Gilmore S, Stizza D, Beck B. Physiologic effects of simulated +Gx orbital reentry in primate models of hemorrhagic shock. Aviat Sp Environ Med. 2007;78(Suppl. 4):A14–25.Google Scholar
  22. 22.
    Barr Y, Bacal K, Jones J, Hamilton D. Breast cancer and spaceflight: risk and management. Aviat Sp Environ Med. 2007;78(Suppl. 4):A26–37.Google Scholar
  23. 23.
    Pietrrzyk R, Jones J, Sams C, Whitson P. Renal stone formation among astronauts. Aviat Sp Environ Med. 2007;78(Suppl. 4):A9–13.Google Scholar
  24. 24.
    Hamilton D. Cardiovascular disorders. In: Barratt M, Pool SL, editors. Principles of clinical medicine for space flight. Berlin: Springer; 2008. p. 317–59.CrossRefGoogle Scholar
  25. 25.
    Payne MW, Williams DR, Trudel G. Space flight rehabilitation. Am J Phys Med Rehabil. 2007;86(7):583–91.PubMedGoogle Scholar
  26. 26.
    Locke J. Space environments. In: De Hart RL, Davis JR, editors. Fundamentals of aerospace medicine. 3rd ed. Philadelphia: Lippincott Williams & Wilkins; 2002. p. 245–70.Google Scholar
  27. 27.
    Smith S, Lane H. Spaceflight metabolism and nutritional support. In: Barratt M, Pool SL, editors. Principles of clinical medicine for space flight. Berlin: Springer; 2008. p. 559–76.CrossRefGoogle Scholar
  28. 28.
    Horneck G, Klaus DM, Mancinelli RL. Space microbiology. Microbiol Mol Biol Rev. 2010;74(1):121–56.PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Pierson D. Microbiology. In: Nicogossian AE, Huntoon CL, Pool SL, editors. Space physiology and medicine. 3rd ed. Philadelphia: Lea & Febiger; 1993. p. 157–66.Google Scholar
  30. 30.
    Larios-Sanz M, Kourentzi K, Warmflash D, Jones J, Pierson D, Willson R, et al. 16S rRNA beacons for bacterial monitoring during human space missions. Aviat Sp Environ Med. 2007;78(Suppl. 4):A43–7.Google Scholar
  31. 31.
    Stepaniak P, Ramchandani S, Jones J. Acute urinary retention among astronauts. Aviat Sp Environ Med. 2007;78(Suppl. 4):A5–8.Google Scholar
  32. 32.
    Huntoon CL, Whitson P, Sams C. Hematologic and immunologic functions. In: Nicogossian AE, Huntoon CL, Pool SL, editors. Space physiology and medicine. 3rd ed. Philadelphia: Lea & Febiger; 1993. p. 351–62.Google Scholar
  33. 33.
    De Santo N, Cirillo M, Kirsch K, Coreale G, Drummer C, Frassl W, et al. Anemia and erythropoietin in space flights. Seminars Nephrol. 2005;25(6):379–87.CrossRefGoogle Scholar
  34. 34.
    Morey-Holton E, Hill E, Souza K. Animals and spaceflight: from survival to understanding. J Musculoskelet Neuronal Interact. 2007;7:17–25.PubMedGoogle Scholar
  35. 35.
    Farahani R, DiPietro L. Microgravity and the implications for wound healing. Int Wound J. 2008;5(4):552–61.CrossRefPubMedGoogle Scholar
  36. 36.
    Manuel F, Mader T. Ophthalmologic concerns. In: Barratt M, Pool SL, editors. Principles of clinical medicine for space flight. Berlin: Springer; 2008. p. 535–44.CrossRefGoogle Scholar
  37. 37.
    Jones J, McCarten M, Manuel K, Djojonegoro B, Murray J, Feiversen A, et al. Cataract formation mechanisms and risk in aviation and space crews. Aviat Sp Environ Med. 2007;78(Suppl. 4):A56–66.Google Scholar
  38. 38.
    Campbell M, Billica R, Johnston S. Surgical bleeding in microgravity. Surg Gynecol Obstet. 1993;177:121–5.PubMedGoogle Scholar
  39. 39.
    Rosen R. Blood in zero gravity: NASA tries to prepare for surgery in space. 2012. http://www.theatlantic.com/technology/archive/2012/10/blood-in-zero-gravity-nasa-tries-to-prepare-for-surgery-in-space/263171/. Accessed 15 April 2015.
  40. 40.
    Agnew J, Fibuch E, Hubbard J. Anesthesia during and after exposure to microgravity. Aviat Sp Environ Med. 2004;75(7):571–80.Google Scholar
  41. 41.
    Haidegger T, Sanor J, Benyo Z. Surgery in space: the future of robotic telesurgery. Surg Endosc. 2011;25:681–90.CrossRefPubMedGoogle Scholar
  42. 42.
    Espiner T. NASA’s robonaut 2 scrubs up for space surgery. 2014. http://www.bbc.com/news/technology-26872884. Accessed 15 April 2015.
  43. 43.
    Rutkin A. Mini robot space surgeon to climb inside astronauts. 2014. http://www.newscientist.com/article/dn25341-mini-robot-space-surgeon-to-climb-inside-astronauts.html#.U4fElRb7CF4. Accessed 15 April 2015.

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.SpringfieldUSA

Personalised recommendations