Advertisement

Microgravity and the Human Body

  • H. G. StratmannEmail author
Chapter
Part of the Science and Fiction book series (SCIFICT)

Abstract

The human body evolved to live optimally at a “normal” gravity of 1 g, equal to a downward acceleration of about 9.81 m/s2 at Earth’s surface. In space our bodies become “weightless” and try to adapt to a new environment of “microgravity” in ways that cause problems both there and when astronauts return to Earth. Science fiction stories and movies often deal with microgravity’s effects by either ignoring them or using “artificial gravity” on their spaceships to get around them. The latter can be used realistically, such as having a large space station rotating at an appropriate rate to simulate gravity. Or it can involve a considerably less realistic flip-a-switch gravity field that lets spacefarers walk and move as if they were on Earth.

Keywords

Resistive Exercise White Dwarf Science Fiction Solar Sail Artificial Gravity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Walker J. Gravitation. In: Walker J, editor. Halliday & Resnick. Fundamentals of physics. 9th ed. Hoboken: Wiley; 2011. pp. 330–58.Google Scholar
  2. 2.
    Buckey JC. Space physiology. New York: Oxford University Press; 2006.Google Scholar
  3. 3.
    Clément G. Fundamentals of space medicine. 2nd ed. New York: Springer; 2011.CrossRefGoogle Scholar
  4. 4.
    Ortega H, Harm D. Space and entry motion sickness. In: Barratt M, Pool SL, editors. Principles of clinical medicine for space flight. New York: Springer; 2008. pp. 211–22.CrossRefGoogle Scholar
  5. 5.
    Reschke M, Harm D, Parker D, Sandoz G, Homick J, Vancerploeg J. Neurophysiologic aspects: space motion sickness. In: Nicogossian AE, Huntoon CL, Pool SL, editors. Space physiology and medicine. 3rd ed. Malvern: Lea & Febiger; 1993. pp. 228–60.Google Scholar
  6. 6.
    Stewart L, Trunkey D, Rebagliati S. Emergency medicine in space. J Emerg Med. 2007;32(1):45–54.CrossRefPubMedGoogle Scholar
  7. 7.
    Thornton WE, Bonato F. Space motion sickness and motion sickness: symptoms and etiology. Aviat Space Environ Med. 2013;84(7):716–21.CrossRefPubMedGoogle Scholar
  8. 8.
    Williams D, Kuipers A, Mukai C, Thirsk R. Acclimation during space flight: effects on human physiology. Can Med Assoc J. 2009;180:1317–23.CrossRefGoogle Scholar
  9. 9.
    Baker E, Barratt M, Wear M. Human response to space flight. In: Barratt M, Pool SL, editors. Principles of clinical medicine for space flight. New York: Springer; 2008. pp. 27–57.CrossRefGoogle Scholar
  10. 10.
    Reschke M, Bloomberg J, Paloski W, Harm D, Parker D. Neurophysiologic aspects: sensory and sensory-motor function. In: Nicogossian AE, Huntoon CL, Pool SL, editors. Space physiology and medicine. 3rd ed. Malvern: Lea & Febiger; 1993. pp. 261–85.Google Scholar
  11. 11.
    Oman C, Howard I, Smith T, Beall A, Natapoff A, Zacher J, et al. The role of visual cues in microgravity spatial orientation. http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20030068201.pdf.
  12. 12.
    Oman C. Human visual orientation in weightlessness. Levels of perception. New York: Springer; 2003. pp. 375–98.Google Scholar
  13. 13.
    Clark J, Bacal K. Neurologic concerns. In: Barratt M, Pool SL, editors. Principles of clinical medicine for space flight. New York: Springer; 2008. pp. 361–80.CrossRefGoogle Scholar
  14. 14.
    Parmet A, Gillingham K. Spatial orientation. In: DeHart RL, Davis JR, editors. Fundamentals of aerospace medicine. 3rd ed. Philadelphia: Lippincott Williams & Wilkins; 2002. pp. 184–244.Google Scholar
  15. 15.
    Payne MW, Williams DR, Trudel G. Space flight rehabilitation. Am J Phys Med Rehabil. 2007;86(7):583–91.PubMedGoogle Scholar
  16. 16.
    Planel H. Space and Life. An introduction to space biology and medicine. Boca Raton: CRC Press; 2004.Google Scholar
  17. 17.
    Hamilton D. Cardiovascular disorders. In: Barratt M, Pool SL, editors. Principles of clinical medicine for space flight. New York: Springer; 2008. pp. 317–59.CrossRefGoogle Scholar
  18. 18.
    Convertino V. Consequences of cardiovascular adaptation to spaceflight: implications for the use of phamacological countermeasures. Gravit Space Biol. 2005;18:59–70.PubMedGoogle Scholar
  19. 19.
    Antonutto G, Clément G, Ferretti G, Linnarsson D, Traon A, Di Prampero P. Physiological targets of artificial gravity: the cardiovascular system. In: Clément G, Bukley A, editors. Artificial gravity. New York: Microcosm Press and Springer; 2007. pp. 137–62.CrossRefGoogle Scholar
  20. 20.
    Aubert A, Beckers F, Verheyden B. Cardiovascular function and basics of physiology in microgravity. Acta Cardiologica. 2005;60:129–51.CrossRefPubMedGoogle Scholar
  21. 21.
    Nicogossian AE, Sawin C, Grigoriev AI. Countermeasures to space deconditioning. In: Nicogossian AE, Huntoon CL, Pool SL, editors. Space medicine and physiology. Malvern: Lea & Febiger; 1993. pp. 447–67.Google Scholar
  22. 22.
    Burton R, Whinnery J. Biodynamics: sustained acceleration. In: DeHart RL, Davis JR, editors. Fundamentals of aerospace medicine. 3rd ed. Philadelphia: Lippincott Williams & Wilkins; 2002. pp. 122–53.Google Scholar
  23. 23.
    Perhonen M, Franco F, Lane L, Buckey J, Blomqvist C, Zerwekh J, et al. Cardiac atrophy after bed rest and spaceflight. J Appl Physiol. 2001;91:645–53.PubMedGoogle Scholar
  24. 24.
    Kirkpatrick A, Campbell M, Jones J, Broderick T, Ball C, McBeth P, et al. Extraterrestrial hemorrhage control: terrestrial developments in technique, technology, and philosophy with applicability to traumatic hemorrhage control in long-duration spaceflight. J Am College Surg. 2005;200(1):64–76.CrossRefGoogle Scholar
  25. 25.
    Planel H. Cosmic radiation. Space and life. An introduction to space biology and medicine. Boca Raton: CRC Press; 2004. pp. 121–40.Google Scholar
  26. 26.
    Huntoon CL, Whitson P, Sams C. Hematologic and immunologic functions. In: Nicogossian AE, Huntoon CL, Pool SL, editors. Space physiology and medicine. 3rd ed. Malvern: Lea & Febiger; 1993. pp. 351–62.Google Scholar
  27. 27.
    Kalb R, Solomon D. Space exploration, Mars, and the nervous system. Arch Neurol. 2007;64(April):485–90.Google Scholar
  28. 28.
    Sayson JV, Hargens AR. Pathophysiology of low back pain during exposure to microgravity. Aviat Space Environ Med. 2008;79(4):365–73.CrossRefPubMedGoogle Scholar
  29. 29.
    Shackelford L. Musculoskeletal response to space flight. In: Barratt M, Pool SL, editors. Principles of clinical medicine for space flight. New York: Springer; 2008. pp. 293–306.Google Scholar
  30. 30.
    Jaweed M. Muscle structure and function. In: Nicogossian AE, Huntoon CL, Pool SL, editors. Space physiology and medicine. 3rd ed. Malvern: Lea & Febiger; 1993. pp. 317–26.Google Scholar
  31. 31.
    Narici M, Zange J, Di Prampero P. Physiological targets of artificial gravity: the neuromuscular system. In: Clément G, Bukley A, editors. Artificial gravity. New York: Microcosm Press and Springer; 2007. pp. 163–90.CrossRefGoogle Scholar
  32. 32.
    Schneider B, LeBlanc A, Taggart L. Bone and mineral metabolism. In: Nicogossian AE, Huntoon CL, Pool SL, editors. Space physiology and medicine. 3rd ed. Malvern: Lea & Febiger; 1993. pp. 327–33.Google Scholar
  33. 33.
    LeBlanc A, Spector E, Evans H, Sibonga J. Skeletal responses to space flight and the bed rest analog: a review. J Musculoskelt Neuronal Interact. 2007;7:33–47.Google Scholar
  34. 34.
    Cavanagh P, Licata A, Rice A. Exercise and pharmacological countermeasures for bone loss during long-duration space flight. Gravit Space Biol. 2005;18(June):39–58.PubMedGoogle Scholar
  35. 35.
    Tamma R, Colaianni G, Camerino C, Di Benedetto A, Greco G, Strippoli M, et al. Microgravity during spaceflight directly affects in vitro osteoclastogenesis and bone resorption. FASEB J. 2009;23(8):2549–54.CrossRefPubMedGoogle Scholar
  36. 36.
    Orwoll E, Adler R, Amin S, Binkley N, Lewiecki E, Petak S, et al. Skeletal health in long-duration astronauts: nature, assessment, and management recommendations from the NASA bone summit. JMBR. 2013;28(June):1243–55.Google Scholar
  37. 37.
    Strollo F. Chapter 4. Hormonal changes in humans during spaceflight. Advances in Space Biology and Medicine. 1999; 7:99–129.Google Scholar
  38. 38.
    Finkelstein JS, Brockwell SE, Mehta V, Greendale GA, Sowers MR, Ettinger B, et al. Bone mineral density changes during the menopause transition in a multiethnic cohort of women. J Clin Endocrinol Metab. 2008;93(3):861–8.PubMedCentralCrossRefPubMedGoogle Scholar
  39. 39.
    Canan J. Health effects of human spaceflight. Aerosp Am. 2013(September):24–30.Google Scholar
  40. 40.
    Qin Y. Challenges to the musculoskeleton during a journey to Mars: assessment and counter measures. J Cosmol. 2010;12:3778–80.Google Scholar
  41. 41.
    Advanced Resistive Exercise Device. 2013. http://www.nasa.gov/mission_pages/station/research/experiments/1001_prt.html. Accessed 15 April 2015.
  42. 42.
    Lang T. Bone Loss in Long-Duration Spaceflight: Measurements and Countermeasures. 2013. http://astronautical.org/sites/default/files/issrdc/2013/issrdc_2013-07-16-0945_lang.pdf. Accessed 15 April 2015.
  43. 43.
    Smith SM, Heer MA, Shackelford LC, Sibonga JD, Ploutz-Snyder L, Zwart SR. Benefits for bone from resistance exercise and nutrition in long-duration spaceflight: Evidence from biochemistry and densitometry. J Bone Miner Res. 2012;27(9):1896–906.CrossRefPubMedGoogle Scholar
  44. 44.
    LeBlanc A, Matsumoto T, Jones J, Shapiro J, Lang T, Shackelford L, et al. Bisphosphonates as a supplement to exercise to protect bone during long-duration spaceflight. Osteoporos Int. 2013;24(7):2105–14.CrossRefPubMedGoogle Scholar
  45. 45.
    Nagaraja M, Jo H. The role of mechanical stimulation in recovery of bone loss—high versus low magnitude and frequency of force. Life. 2014;4(2):117–30.CrossRefPubMedGoogle Scholar
  46. 46.
    Hargens AR, Bhattacharya R, Schneider SM. Space physiology VI: exercise, artificial gravity, and countermeasure development for prolonged space flight. Eur J Appl Physiol. 2013;113(9):2183–92.CrossRefPubMedGoogle Scholar
  47. 47.
    Scheuring RA, Mathers CH, Jones JA, Wear ML. Musculoskeletal injuries and minor trauma in space: incidence and injury mechanisms in U.S. astronauts. Aviat Space Environ Med. 2009;80(2):117–24.CrossRefPubMedGoogle Scholar
  48. 48.
    Wiener TC. Space obstructive syndrome: intracranial hypertension, intraocular pressure, and papilledema in space. Aviat Space Environ Med. 2012;83(1):64–6.CrossRefPubMedGoogle Scholar
  49. 49.
    Zwart S, Gibson C, Mader T, Ericson K, Ploutz-Snyder R, Heer M, et al. Vision changes after spaceflight are related to alterations in folate- and vitamin B-12-dependent one-carbon metabolism. J Nutr. 2012;142:427–31.CrossRefPubMedGoogle Scholar
  50. 50.
    Smith-Bindman R, Aubin C, Bailitz J, Bengiamin RN, Camargo CA, Corbo J, et al. Ultrasonography versus computed tomography for suspected nephrolithiasis. N Engl J Med. 2014;371(12):1100–10.CrossRefPubMedGoogle Scholar
  51. 51.
    Tou J. Models to study gravitational biology of mammalian reproduction. Biol Reprod. 2002;67(6):1681–7.CrossRefPubMedGoogle Scholar
  52. 52.
    Pickard J. The atmosphere and respiration. In: DeHart RL, Davis JR, editors. Fundamentals of aerospace medicine. 3rd ed. Philadelphia: Lippincott Williams & Wilkins; 2002. pp. 19–38.Google Scholar
  53. 53.
    Bukley A, Paloski W, Clément G. Physics of artificial gravity. In: Clément G, Bukley A, editors. Artificial gravity. New York: Microcosm Press and Springer; 2007. pp. 33–58.CrossRefGoogle Scholar
  54. 54.
    Clément G, Bukley A, Paloski W. History of artificial gravity. In: Clément G, Bukley A, editors. Artificial gravity. New York: Microcosm Press and Springer; 2007. pp. 59–93.CrossRefGoogle Scholar
  55. 55.
    Globus A, Arora N, Bajoria A, Straut J. The Kalpana One orbital space settlement revised. http://alglobus.net/NASAwork/papers/2007KalpanaOne.pdf. Accessed 15 April 2015.
  56. 56.
    Comins NF. The deaths of stars. Discovering the essential universe. 4th ed. New York: W. H. Freeman and Company; 2009. pp. 309–50.Google Scholar
  57. 57.
    Comins NF. Gravitation and the motion of the planets. Discovering the essential universe. 4th ed. New York: W. H. Freeman and Company; 2009. pp. 27–60.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.SpringfieldUSA

Personalised recommendations