Advertisement

Bionics: Creating the Twenty-Four Million Dollar Man or Woman

  • H. G. StratmannEmail author
Chapter
Part of the Science and Fiction book series (SCIFICT)

Abstract

The unmodified human body has many physical limitations. Even the best Olympic athletes can only run so fast or jump so high. Our vision is limited to a tiny sliver of the electromagnetic spectrum and our hearing to a narrow range of frequencies. From an overall biological perspective healthy individuals differ over only a small range regarding what they can physically do and how easily their skin, bones, and other tissues can be damaged.

Keywords

Optic Nerve Cochlear Implant Science Fiction Microelectrode Array Cardiac Allograft Vasculopathy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Clynes M, Kline N. Cyborgs and space. Astronautics. 1960(September):25–6, 74–6.Google Scholar
  2. 2.
    Dolgin E. Managed by machine. Nature. 2012;485:S6–8.CrossRefPubMedGoogle Scholar
  3. 3.
    Thurston A. Paré and prosthetics: the early history of artificial limbs. ANZ J Surg. 2007;77(12):1114–9.CrossRefPubMedGoogle Scholar
  4. 4.
    Brumfiel G. The insane and exciting future of the bionic body. 2013. http://www.smithsonianmag.com/innovation/the-insane-and-exciting-future-of-the-bionic-body-918868/?page=2. Accessed 15 April 2015.
  5. 5.
    Service R. Bioelectronics: the cyborg era begins. Science. 2013;340:1162–5.CrossRefPubMedGoogle Scholar
  6. 6.
    Herr HM, Grabowski AM. Bionic ankle-foot prosthesis normalizes walking gait for persons with leg amputation. Proc Biol Sci. 2012;279(1728):457–64.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    McCarthy B. Flex-Foot Cheetah. 2011. http://www.ele.uri.edu/courses/bme281/F11/BrookeM_2.pdf. Accessed 15 April 2015.
  8. 8.
    Hargrove LJ, Simon AM, Young AJ, Lipschutz RD, Finucane SB, Smith DG, et al. Robotic leg control with EMG decoding in an amputee with nerve transfers. N Engl J Med. 2013;369(13):1237–42.CrossRefPubMedGoogle Scholar
  9. 9.
    Dawley J, Fite K, Fulk G. EMG control of a bionic knee prosthesis: exploiting muscle co-contractions for improved locomotor function. IEEE Int Conf Rehabil Robot. 2013;(June):1–6.Google Scholar
  10. 10.
    Tabot G, Dammann J, Berg J, Tenore F, Boback J, Vogelstein R, et al. Restoring the sense of touch with a prosthetic hand through a brain interface. Proc Natl Acad Sci. 2013;110(45):18279–84.Google Scholar
  11. 11.
    Raspopovic S, Capogrosso M, Petrini FM, Bonizzato M, Rigosa J, Di Pino G, et al. Restoring natural sensory feedback in real-time bidirectional hand prostheses. Sci Transl Med. 2014;6(222):222ra19.CrossRefPubMedGoogle Scholar
  12. 12.
    Kwok R. Once more, with feeling. Nature. 2013;497:176–8.CrossRefPubMedGoogle Scholar
  13. 13.
    del Valle J, Navarro X. Interfaces with the peripheral nerve for the control of neuroprostheses. Int Rev Neurobiol. 2013;109:63–83.CrossRefPubMedGoogle Scholar
  14. 14.
    Tan DW, Schiefer MA, Keith MW, Anderson JR, Tyler J, Tyler DJ. A neural interface provides long-term stable natural touch perception. Sci Transl Med. 2014;6(257):257ra138.CrossRefPubMedGoogle Scholar
  15. 15.
    Pirowska A, Wloch T, Nowobilski R, Plaszewski M, Hocini A, Ménager D. Phantom phenomena and body scheme after limb amputation: a literature review. Neurologia i Neurochirurgia Polska. 2014;48(1):52–9.CrossRefPubMedGoogle Scholar
  16. 16.
    Abbott A. In search of the sixth sense. Nature. 2006;442:125–7.CrossRefPubMedGoogle Scholar
  17. 17.
    Zrenner E. Fighting blinding with microelectronics. Sci Transl Med. 2013;5(210):210ps16.CrossRefPubMedGoogle Scholar
  18. 18.
    Chuang A, Margo C, Greensberg P. Retinal implants: a systematic review. 2013. http://bjo.bmj.com/content/early/2014/01/08/bjophthalmol-2013-303708.abstract?sid=3e338ecd-584a-4346-bc29-6a8b16951f55. Accessed 15 April 2015.
  19. 19.
    Luo Y, da Cruz L. A review and update on the current status of retinal prostheses (bionic eye). 2014. http://bmb.oxfordjournals.org/content/early/2014/02/12/bmb.ldu002.abstract?sid=fff951f7-9033-40d0-951f-6371bccdb700. Accessed 15 April 2015.
  20. 20.
    Guenther T, Lovell N, Suaning G. Bionic vision: system architectures: a review. Expert Rev Med Devices. 2012;9(1):33–48.CrossRefPubMedGoogle Scholar
  21. 21.
    Ong J, da Cruz L. The bionic eye: a review. Clin Exp Ophthalmol. 2012;40(1):6–17.CrossRefGoogle Scholar
  22. 22.
    Merabet LB. Building the bionic eye: an emerging reality and opportunity. Prog Brain Res. 2011;192:3–15.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Nirenberg S, Pandarinath C. Retinal prosthetic strategy with the capacity to restore normal vision. Proc Natl Acad Sci. 2012;109(37):15012–7.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Greenemeier L. FDA approves first retinal implant. 2013. http://www.nature.com/news/fda-approves-first-retinal-implant-1.12439. Accessed 15 April 2015.
  25. 25.
    Stingl K, Bartz-Schmidt KU, Besch D, Braun A, Bruckmann A, Gekeler F, et al. Artificial vision with wirelessly powered subretinal electronic implant alpha-IMS. Proc Biol Sci. 2013;280(1757):20130077.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Ghovanloo M. An overview of the recent wideband transcutaneous wireless communication techniques. Conf Proc IEEE Eng Med Biol Soc. 2011;2011:5864–7.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Pezaris JS, Eskandar EN. Getting signals into the brain: visual prosthetics through thalamic microstimulation. Neurosurg Focus. 2009;27(1):E6.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Eshraghi AA, Gupta C, Ozdamar O, Balkany TJ, Truy E, Nazarian R. Biomedical engineering principles of modern cochlear implants and recent surgical innovations. Anat Rec (Hoboken). 2012;295(11):1957–66.CrossRefGoogle Scholar
  29. 29.
    Eshraghi AA, Nazarian R, Telischi FF, Rajguru SM, Truy E, Gupta C. The cochlear implant: historical aspects and future prospects. Anat Rec (Hoboken). 2012;295(11):1967–80.CrossRefGoogle Scholar
  30. 30.
    Lenarz T, Pau H, Paasche G. Cochlear implants. Curr Pharm Biotechnol. 2013;14:112–23.PubMedGoogle Scholar
  31. 31.
    Wilson BS, Dorman MF, Woldorff MG, Tucci DL. Cochlear implants matching the prosthesis to the brain and facilitating desired plastic changes in brain function. Prog Brain Res. 2011;194:117–29.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    NIDCD Fact Sheet. Cochlear Implants. http://www.nidcd.nih.gov/staticresources/health/hearing/FactSheetCochlearImplant.pdf. Accessed 15 April 2015.
  33. 33.
    Fallon JB, Irvine DRF, Shepherd RK. Neural prostheses and brain plasticity. J Neural Eng. 2009;6(6):065008.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Marozeau J, Innes-Brown H, Blamey PJ. The acoustic and perceptual cues affecting melody segregation for listeners with a cochlear implant. Front Psychol. 2013;4:790.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Lawand N, Ngamkham W, Nazarian G, French P, Serdijn W, Gaydadjiev G, et al. An improved system approach towards future cochlear implants. Conf Proc IEEE Eng Med Biol Soc. 2013;2013:5163–6.PubMedGoogle Scholar
  36. 36.
    Vincent C. Auditory brainstem implants: how do they work? Anat Rec (Hoboken). 2012;295(11):1981–6.CrossRefGoogle Scholar
  37. 37.
    Mannoor M, Jiang ZS, James T, Kong Y, Malatesta K, Soboyejo W, et al. 3D printed bionic ears. Nano Letters. 2013;13(6):2634–9.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Parker MS, Fahrner LJ, Deuell BP, Olsen KM, Kasirajan V, Shah KB, et al. Total artificial heart implantation: clinical indications, expected postoperative imaging findings, and recognition of complications. AJR Am J Roentgenol. 2014;202(3):W191–201.CrossRefPubMedGoogle Scholar
  39. 39.
    Copeland J. SynCardia total artificial heart. Tex Heart Inst J. 2013;40(5):587–8.PubMedPubMedCentralGoogle Scholar
  40. 40.
    What Is a Total Artificial Heart? 2014. http://www.nhlbi.nih.gov/health/health-topics/topics/tah/. Accessed 15 April 2015.
  41. 41.
    Lee B, Liu CY, Apuzzo ML. A primer on brain-machine interfaces, concepts, and technology: a key element in the future of functional neurorestoration. World Neurosurg. 2013;79(3–4):457–71.CrossRefPubMedGoogle Scholar
  42. 42.
    Lebedev M, Tate A, Hanson TL, Li Z, O’Doherty JE, Winans J, et al. Future developments in brain-machine interface. Clinics. 2011;66(S1):25–32.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Leuthardt EC, Schalk G, Roland J, Rouse A, Moran DW. Evolution of brain-computer interfaces: going beyond classic motor physiology. Neurosurg Focus. 2009;27(1):E4.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Nair P. Brain-machine interface. Proc Natl Acad Sci U S A. 2013;110(46):18343.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Nicolas-Alonso LF, Gomez-Gil J. Brain computer interfaces, a review. Sensors (Basel). 2012;12(2):1211–79.CrossRefGoogle Scholar
  46. 46.
    Ifft PJ, Shokur S, Li Z, Lebedev MA, Nicolelis MA. A brain-machine interface enables bimanual arm movements in monkeys. Sci Transl Med. 2013;5(210):210ra154.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Hochberg L. Turning thought into action. N Engl J Med. 2008;359(11):1175–7.CrossRefPubMedGoogle Scholar
  48. 48.
    Shih JJ, Krusienski DJ, Wolpaw JR. Brain-computer interfaces in medicine. Mayo Clin Proc. 2012;87(3):268–79.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Thakor N. Translating the brain-machine interface. Sci Transl Med. 2013;5(210):210ps17.CrossRefPubMedGoogle Scholar
  50. 50.
    Keefer EW, Botterman BR, Romero MI, Rossi AF, Gross GW. Carbon nanotube coating improves neuronal recordings. Nat Nanotechnol. 2008;3(7):434–9.CrossRefPubMedGoogle Scholar
  51. 51.
    Blake D. How brains learn to control machines. Nature. 2012;483:284–5.CrossRefPubMedGoogle Scholar
  52. 52.
    Koralek AC, Jin X, Long JD, 2nd, Costa RM, Carmena JM. Corticostriatal plasticity is necessary for learning intentional neuroprosthetic skills. Nature. 2012;483(7389):331–5.Google Scholar
  53. 53.
    Ryu SI, Shenoy KV. Human cortical prostheses: lost in translation? Neurosurg Focus. 2009;27(1):E5.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Rapoport B, Kedzierski J, Sarpeshkar R. A glucose fuel cell for implantable brain-machine interfaces. 2012. http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0038436. Accessed 15 April 2015.
  55. 55.
    Lule D, Noirhomme Q, Kleih S, Chatelle C, Halder S, Demertzi A, et al. Probing command following in patients with disorders of consciousness using a brain-computer interface. Clin Neurophysiol. 2013;124(1):101–6.CrossRefPubMedGoogle Scholar
  56. 56.
    Chatele C, Chennu S, Noirhomme Q, Cruse D, Owen A, Laureys S. Brain-computer interfacing in disorders of consciousness. Brain Inj. 2012;26(12):1510–22.CrossRefGoogle Scholar
  57. 57.
    Naci L, Monti M, Cruse D, Kubler A, Sorger B, Goebel R, et al. Brain-computer interfaces for communication with unresponsive patients. Ann Neurol. 2012;72(3):312–23.CrossRefPubMedGoogle Scholar
  58. 58.
    Schoen J, Boysen M, Warren C, Chakravarthy B, Lotfipour S. Vertebrobasilar artery occlusion. West J Emerg Med. 2011;12(May):233–9.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Gwynne P. Technology: mobility machines. Nature. 2013;503:S16–7.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.SpringfieldUSA

Personalised recommendations