Advertisement

Stem Cells and Organ Transplantation: Resetting Our Biological Clocks

  • H. G. StratmannEmail author
Chapter
Part of the Science and Fiction book series (SCIFICT)

Abstract

The human body has only a limited ability to repair itself. Illness, injury, and aging can overwhelm its built-in capability to replace dysfunctional, damaged, or destroyed tissues. We can at best only partly regenerate our organs and cannot grow back a whole limb.

Keywords

Stem Cell Mesenchymal Stem Cell Human Leukocyte Antigen Cancer Stem Cell Neural Stem Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Doulatov S, Daley GQ. Development. A stem cell perspective on cellular engineering. Science. 2013;342(6159):700–2.PubMedCrossRefGoogle Scholar
  2. 2.
    Jordan C, Guzman M, Noble M. Cancer stem cells. N Engl J Med. 2006;355(12):1253–61.PubMedCrossRefGoogle Scholar
  3. 3.
    Kolios G, Moodley Y. Introduction to stem cells and regenerative medicine. Respiration. 2013;85(1):3–10.PubMedCrossRefGoogle Scholar
  4. 4.
    Ma X, Zhang Q, Yang X, Tian J. Development of new technologies for stem cell research. J Biomed Biotechnol. 2012;2012:741416.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Fuchs E, Chen T. A matter of life and death: self-renewal in stem cells. EMBO Rep. 2013;14(1):39–48.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Sokolov M, Neumann R. Lessons learned about human stem cell responses to ionizing radiation exposures: a long road still ahead of us. Int J Mol Sci. 2013;14(8):15695–723.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Liang G, Zhang Y. Embryonic stem cell and induced pluripotent stem cell: an epigenetic perspective. Cell Res. 2013;23(1):49–69.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Shyh-Chang N, Daley GQ, Cantley LC. Stem cell metabolism in tissue development and aging. Development. 2013;140(12):2535–47.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Szabłowska-Gadomska I, Górska A, Małecki M. Induced pluripotent stem cells (iPSc) for gene therapy. Med Wieku Rozwoj. 2013;17(3):191–5.PubMedGoogle Scholar
  10. 10.
    Gao L, Thilakavathy K, Nordin N. A plethora of human pluripotent stem cells. Cell Biol Int. 2013;37(9):875–87.PubMedCrossRefGoogle Scholar
  11. 11.
    Li W, Ding S. Human pluripotent stem cells: decoding the naive state. Sci Transl Med. 2011;3(76):76 ps10.CrossRefGoogle Scholar
  12. 12.
    Thomson JA. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282(5391):1145–7.PubMedCrossRefGoogle Scholar
  13. 13.
    Terzic A, Nelson T. Regenerative medicine primer. Mayo Clinic Proc. 2013;88(7):766–75.CrossRefGoogle Scholar
  14. 14.
    Wang ML, Chiou SH, Wu CW. Targeting cancer stem cells: emerging role of Nanog transcription factor. Onco Targets Ther. 2013;6:1207–20.PubMedPubMedCentralGoogle Scholar
  15. 15.
    van Wijngaarden P, Franklin RJ. Ageing stem and progenitor cells: implications for rejuvenation of the central nervous system. Development. 2013;140(12):2562–75.PubMedCrossRefGoogle Scholar
  16. 16.
    Bibber B, Sinha G, Lobba AR, Greco SJ, Rameshwar P. A review of stem cell translation and potential confounds by cancer stem cells. Stem Cells Int. 2013;2013:241048.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Ikebe C, Suzuki K. Mesenchymal stem cells for regenerative therapy: optimization of cell preparation protocols. Biomed Res Int. 2014;2014:951512.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Leatherman J. Stem cells supporting other stem cells. Front Genet. 2013;4:257.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    de Sa Silva F, Almeida PN, Rettore JV, Maranduba CP, de Souza CM, de Souza GT, et al. Toward personalized cell therapies by using stem cells: seven relevant topics for safety and success in stem cell therapy. J Biomed Biotechnol. 2012;2012:758102.Google Scholar
  20. 20.
    Ballen KK, Barker JN. Has umbilical cord blood transplantation for AML become mainstream? Curr Opin Hematol. 2013;20(2):144–9.PubMedCrossRefGoogle Scholar
  21. 21.
    Signer RA, Morrison SJ. Mechanisms that regulate stem cell aging and lifespan. Cell Stem Cell. 2013;12(2):152–65.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Bowman T, Zon L. Ageing: stem cells on a stress-busting diet. Nature. 2013;494:317–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Li M, Belmonte JC. Ageing: genetic rejuvenation of old muscle. Nature. 2014;506:304–5.PubMedCrossRefGoogle Scholar
  24. 24.
    Hayashi E, Hosoda T. Therapeutic application of cardiac stem cells and other cell types. Biomed Res Int. 2013;2013:736815.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Wong W, Sayed N, Cooke J. Induced pluripotent stem cells: how they will change the practice of cardiovascular medicine. Methodist Debakey Cardiovasc J. 2013;9(4):206–9.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Michler R. Stem cell therapy for heart failure. Methodist Debakey Cardiovasc J. 2013;9(4):187–94.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Doppler SA, Deutsch MA, Lange R, Krane M. Cardiac regeneration: current therapies-future concepts. J Thorac Dis. 2013;5(5):683–97.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Wang J, Liao L, Wang S, Tan J. Cell therapy with autologous mesenchymal stem cells–how the disease process impacts clinical considerations. Cytotherapy. 2013;15(8):893–904.PubMedCrossRefGoogle Scholar
  29. 29.
    Dimarino AM, Caplan AI, Bonfield TL. Mesenchymal stem cells in tissue repair. Front Immunol. 2013;4:201.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Salibian AA, Widgerow AD, Abrouk M, Evans GR. Stem cells in plastic surgery: a review of current clinical and translational applications. Arch Plast Surg. 2013;40(6):666–75.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Schächinger V, Erbs S, Elsässer A, Haberbosch W, Hambrecht R, Hölschermann H, et al. Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N Engl J Med. 2006;355:1210–21.PubMedCrossRefGoogle Scholar
  32. 32.
    Sanchez L. Use of stem cells in heart failure treatment: where we stand and where we are going. Methodist Debakey Cardiovasc J. 2013;9(4):195–200.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Gage FH, Temple S. Neural stem cells: generating and regenerating the brain. Neuron. 2013;80(3):588–601.PubMedCrossRefGoogle Scholar
  34. 34.
    Hsu YC, Chen SL, Wang DY, Chiu IM. Stem cell-based therapy in neural repair. Biomed J. 2013;36(3):98–105.PubMedCrossRefGoogle Scholar
  35. 35.
    Willyard C. Stem cells: a time to heal. Nature. 2013;503:S4–S6.PubMedCrossRefGoogle Scholar
  36. 36.
    English D, Sharma NK, Sharma K, Anand A. Neural stem cells-trends and advances. J Cell Biochem. 2013;114(4):764–72.PubMedCrossRefGoogle Scholar
  37. 37.
    Briggs R, King TJ. Transplantation of living nuclei from blastula cells into enucleated frogs’ eggs. Proc Natl Acad Sci USA. 1952;38:455–63.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Gurdon JB, Elsdale TR, Fischberg M. Sexually mature individuals of Xenopus laevis from the transplantation of single somatic nuclei. Nature. 1958;182:64–65.PubMedCrossRefGoogle Scholar
  39. 39.
    Siller R, Greenhough S, Park I, Sullivan G. Modelling human disease with pluripotent stem cells. Current Gene Therapy. 2013;13(2):99–110.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Fernandez Tde S, de Souza Fernandez C, Mencalha AL. Human induced pluripotent stem cells from basic research to potential clinical applications in cancer. Biomed Res Int. 2013;2013:430290.PubMedGoogle Scholar
  41. 41.
    Hou P, Li Y, Zhang X, Liu C, Guan J, Li H, et al. Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science. 2013;341(6146):651–4.PubMedCrossRefGoogle Scholar
  42. 42.
    Sharkis S, Jones R, Civin C, Jang Y. Pluripotent stem cell-based cancer therapy: promise and challenges. Sci Transl Med. 2012;4(127):127ps9.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76.PubMedCrossRefGoogle Scholar
  44. 44.
    Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861–72.PubMedCrossRefGoogle Scholar
  45. 45.
    Wang M, Chiou S, Wu C. Targeting cancer stem cells: emerging role of Nanog transcription factor. Oncology Targets and Therapy. 2013;6:1207–20.Google Scholar
  46. 46.
    Jauch R, Kolatkar P. What makes a pluripotency reprogramming factor? Current Molecular Medicine. 2013;13(5):806–14.PubMedCrossRefGoogle Scholar
  47. 47.
    O’Doherty R, Greiser U, Wang W. Nonviral methods for inducing pluripotency to cells. Biomed Res Int. 2013;2013:705902.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Sancho-Martinez I, Belmonte J. Stem Cells: Surf the waves of reprogramming. Nature. 2013;493:310–1.Google Scholar
  49. 49.
    Bai Q, Desprat R, Klein B, Lemaitre J, De Vos J. Embryonic stem cells or induced pluripotent stem cells? A DNA integrity perspective. CurrGene Ther. 2013;13(2):93–8.Google Scholar
  50. 50.
    Ma T, Xie M, Laurent T, Ding S. Progress in the reprogramming of somatic cells. Circ Res. 2013;112(3):562–74.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Nguyen HT, Geens M, Spits C. Genetic and epigenetic instability in human pluripotent stem cells. Hum Reprod Update. 2013;19(2):187–205.PubMedCrossRefGoogle Scholar
  52. 52.
    Wutz A. Epigenetic alterations in human pluripotent stem cells: a tale of two cultures. Cell Stem Cell. 2012;11(1):9–15.PubMedCrossRefGoogle Scholar
  53. 53.
    Zhou H, Ding S. Evolution of induced pluripotent stem cell technology. Curr Opin Hematol. 2010;17(4):276–80.PubMedCrossRefGoogle Scholar
  54. 54.
    Zhao XY, Li W, Lv Z, Liu L, Tong M, Hai T, et al. iPS cells produce viable mice through tetraploid complementation. Nature. 2009;461(7260):86–90.PubMedCrossRefGoogle Scholar
  55. 55.
    Boland MJ, Hazen JL, Nazor KL, Rodriguez AR, Gifford W, Martin G, et al. Adult mice generated from induced pluripotent stem cells. Nature. 2009;461(7260):91–4.PubMedCrossRefGoogle Scholar
  56. 56.
    Lo B, Parham L, Alvarez-Buylla A, Cedars M, Conklin B, Fisher S, et al. Cloning mice and men: prohibiting the use of iPS cells for human reproductive cloning. Cell Stem Cell. 2010;6(1):16–20.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Egashira T, Yuasa S, Fukuda K. Novel insights into disease modeling using induced pluripotent stem cells. Biol Pharm Bull. 2013;36(2):182–8.PubMedCrossRefGoogle Scholar
  58. 58.
    Mercola M, Colas A, Willems E. Induced pluripotent stem cells in cardiovascular drug discovery. Circ Res. 2013;112(3):534–48.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Zhu Z, Huangfu D. Human pluripotent stem cells: an emerging model in developmental biology. Development. 2013;140(4):705–17.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Simara P, Motl J, Kaufman D. Pluripotent stem cells and gene therapy. Transl Res. 2013;161(4):284–92.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Leeman D, Brunet A. Stem cells: sex specificity in the blood. Nature. 2014;505:488–90.PubMedCrossRefGoogle Scholar
  62. 62.
    Nakada D, Oguro H, Levi BP, Ryan N, Kitano A, Saitoh Y, et al. Oestrogen increases haematopoietic stem-cell self-renewal in females and during pregnancy. Nature. 2014;505(7484):555–8.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Cherry AB, Daley GQ. Reprogrammed cells for disease modeling and regenerative medicine. Annu Rev Med. 2013;64:277–90.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    de Los Angeles A, Daley G. Stem cells: reprogramming in situ. Nature. 2013;502:309–10.CrossRefGoogle Scholar
  65. 65.
    Abad M, Mosteiro L, Pantoja C, Canamero M, Rayon T, Ors I, et al. Reprogramming in vivo produces teratomas and iPS cells with totipotency features. Nature. 2013;502(7471):340–5.PubMedCrossRefGoogle Scholar
  66. 66.
    Sieweke MH, Allen JE. Beyond stem cells: self-renewal of differentiated macrophages. Science. 2013;342(6161):1242974.PubMedCrossRefGoogle Scholar
  67. 67.
    Kuroda T, Ysauda S, Sato Y. Tumorigenicity studies for human pluripotent stem cell-derived products. Biol Pharm Bull. 2013;36(2):189–92.PubMedCrossRefGoogle Scholar
  68. 68.
    Pearl JI, Kean LS, Davis MM, Wu JC. Pluripotent stem cells: immune to the immune system? Sci Transl Med. 2012;4(164):164ps25.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Okano H, Nakamura M, Yoshida K, Okada Y, Tsuji O, Nori S, et al. Steps toward safe cell therapy using induced pluripotent stem cells. Circ Res. 2013;112(3):523–33.PubMedCrossRefGoogle Scholar
  70. 70.
    Mayshar Y, Ben-David U, Lavon N, Biancotti JC, Yakir B, Clark AT, et al. Identification and classification of chromosomal aberrations in human induced pluripotent stem cells. Cell Stem Cell. 2010;7(4):521–31.PubMedCrossRefGoogle Scholar
  71. 71.
    Cyranoski D. Stem cells reprogrammed using chemicals alone. 2013. http://www.nature.com/news/stem-cells-reprogrammed-using-chemicals-alone-1.13416. Accessed 15 April 2015.
  72. 72.
    Lin T, Ambasudhan R, Yuan X, Li W, Hilcove S, Abujarour R, et al. A chemical platform for improved induction of human iPSCs. Nat Methods. 2009;6(11):805–8.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Hanna JH, Saha K, Jaenisch R. Pluripotency and cellular reprogramming: facts, hypotheses, unresolved issues. Cell. 2010;143(4):508–25.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Rais Y, Zviran A, Geula S, Gafni O, Chomsky E, Viukov S, et al. Deterministic direct reprogramming of somatic cells to pluripotency. Nature. 2013;502(7469):65–70.PubMedCrossRefGoogle Scholar
  75. 75.
    de Almeida PE, Ransohoff JD, Nahid A, Wu JC. Immunogenicity of pluripotent stem cells and their derivatives. Circ Res. 2013;112(3):549–61.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Aguilar-Gallardo C, Simon C. Cells, stem cells, and cancer stem cells. Semin Reprod Med. 2013;31(1):5–13.PubMedCrossRefGoogle Scholar
  77. 77.
    Shiozawa Y, Nie B, Pienta KJ, Morgan TM, Taichman RS. Cancer stem cells and their role in metastasis. Pharmacol Ther. 2013;138(2):285–93.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Wang K, Wu X, Wang J, Huang J. Cancer stem cell theory: therapeutic implications for nanomedicine. Int J Nanomedicine. 2013;8:899–908.PubMedPubMedCentralGoogle Scholar
  79. 79.
    ElShamy WM, Duhé RJ. Overview: cellular plasticity, cancer stem cells and metastasis. Cancer Letters. 2013;341(1):2–8.PubMedCrossRefGoogle Scholar
  80. 80.
    Nieto MA. Epithelial plasticity: a common theme in embryonic and cancer cells. Science. 2013;342(6159):1234850.PubMedCrossRefGoogle Scholar
  81. 81.
    Binello E, Germano IM. Stem cells as therapeutic vehicles for the treatment of high-grade gliomas. Neuro Oncol. 2012;14(3):256–65.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Germano IM, Emdad L, Qadeer ZA, Binello E, Uzzaman M. Embryonic stem cell (ESC)-mediated transgene delivery induces growth suppression, apoptosis and radiosensitization, and overcomes temozolomide resistance in malignant gliomas. Cancer Gene Ther. 2010;17(9):664–74.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Pucci F, Gardano L, Harrington L. Short telomeres in ESCs lead to unstable differentiation. Cell Stem Cell. 2013;12(4):479–86.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Watson CJ, Dark JH. Organ transplantation: historical perspective and current practice. Br J Anaesth. 2012;108 Suppl 1:i29–42.PubMedCrossRefGoogle Scholar
  85. 85.
    Dunning J, Calne R. Historical perspectives. In: Klein A, Lewis C, Madsen J, editors. Organ transplantation. A clinical guide. Cambridge: Cambridge University Press; 2011. pp. 1–8.CrossRefGoogle Scholar
  86. 86.
    Merrill J, Murray J, Harrison J, Guild W. Successful homotransplantation of the human kidney between identical twins. J Am Med Assoc. 1956;160:277–82.PubMedCrossRefGoogle Scholar
  87. 87.
    DiBardino D. The history and development of cardiac transplantation. Tex Heart Inst J. 1999;26:198–205.PubMedPubMedCentralGoogle Scholar
  88. 88.
    Orens JB, Garrity ER, Jr. General overview of lung transplantation and review of organ allocation. Proc Am Thorac Soc. 2009;6(1):13–9.PubMedCrossRefGoogle Scholar
  89. 89.
    Song AT, Avelino-Silva VI, Pecora RA, Pugliese V, D’Albuquerque LA, Abdala E. Liver transplantation: fifty years of experience. World J Gastroenterol. 2014;20(18):5363–74.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Han D, Sutherland D. Pancreas transplantation. Gut Liver. 2010;4:450–65.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Issa F, Goto R, Wood K. Immunological principles of acute rejection. In: Klein A, Lewis C, Madsen J, editors. Organ transplantation. A clinical guide. Cambridge: Cambridge University Press; 2011. pp. 9–18.CrossRefGoogle Scholar
  92. 92.
    Kotton C. Major complications–infection. In: Klein A, Lewis C, Madsen J, editors. Organ transplantation. A clinical guide. Cambridge: Cambridge University Press; 2011. pp. 46–52.CrossRefGoogle Scholar
  93. 93.
    Dey B, Spitzer T. Major Complications–Cancer. In: Klein A, Lewis C, Madsen J, editors. Organ transplantation. A clinical guide. Cambridge: Cambridge University Press; 2011. pp. 31–7.CrossRefGoogle Scholar
  94. 94.
    Al-Mansour Z, Nelson B, Evens A. Post-transplant lymphoproliferative disease (PTLD): risk factors, diagnosis, and current treatment strategies. Curr Hematol Malig Rep. 2013;8(3):173–83.PubMedCrossRefGoogle Scholar
  95. 95.
    Kumar V, Gaston R. Immunosuppression: past, present, and future. In: Klein A, Lewis C, Madsen J, editors. Organ transplantation. A clinical guide. Cambridge: Cambridge University Press; 2011. pp. 19–30.CrossRefGoogle Scholar
  96. 96.
    Kushner Y, Colvin R. Major Complications–pathology of chronic rejection. In: Klein A, Lewis C, Madsen J, editors. Organ transplantation. A clinical guide. Cambridge: Cambridge University Press; 2011. pp. 38–45.CrossRefGoogle Scholar
  97. 97.
    Parthasarathy H, Lewis C. Long-term management and outcomes. In: Klein A, Lewis C, Madsen J, editors. Organ transplantation. A clinical guide. Cambridge: Cambridge University Press; 2011. pp. 102–11.CrossRefGoogle Scholar
  98. 98.
    Coffman K, Siemionow M. Ethics of facial transplantation revisited. Curr Opin Org Transpl. 2014;19:181–7.CrossRefGoogle Scholar
  99. 99.
    Khalifian S, Brazio PS, Mohan R, Shaffer C, Brandacher G, Barth RN, et al. Facial transplantation: the first 9 years. The Lancet. 2014;384(9960):2153–63.CrossRefGoogle Scholar
  100. 100.
    Cantu E III, Zaas D. Organ donor management and procurement. In: Klein A, Lewis C, Madsen J, editors. Organ transplantation. A clinical guide. Cambridge: Cambridge University Press; 2011. pp. 53–62.CrossRefGoogle Scholar
  101. 101.
    Hwang DY, Gilmore EJ, Greer DM. Assessment of brain death in the neurocritical care unit. Neurosurg Clin N Am. 2013;24(3):469–82.PubMedCrossRefGoogle Scholar
  102. 102.
    Bose S, Vahabzadeh S, Bandyopadhyay A. Bone tissue engineering using 3D printing. Mater Today. 2013;16(12):496–504.CrossRefGoogle Scholar
  103. 103.
    Reiffel AJ, Kafka C, Hernandez KA, Popa S, Perez JL, Zhou S, et al. High-fidelity tissue engineering of patient-specific auricles for reconstruction of pediatric microtia and other auricular deformities. PLoS One. 2013;8(2):e56506.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Liu Y, Yang R, He Z, Gao W. Generation of functional organs from stem cells. Cell Regen. 2013;2:1–6.CrossRefGoogle Scholar
  105. 105.
    Vogel G. Trachea transplants test the limits. Science. 2013;340:266–8.PubMedCrossRefGoogle Scholar
  106. 106.
    Petersen TH, Calle EA, Zhao L, Lee EJ, Gui L, Raredon MB, et al. Tissue-engineered lungs for in vivo implantation. Science. 2010;329(5991):538–41.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Uygun BE, Soto-Gutierrez A, Yagi H, Izamis ML, Guzzardi MA, Shulman C, et al. Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. Nat Med. 2010;16(7):814–20.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Ott HC, Matthiesen TS, Goh SK, Black LD, Kren SM, Netoff TI, et al. Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat Med. 2008;14(2):213–21.PubMedCrossRefGoogle Scholar
  109. 109.
    Badylak SF, Taylor D, Uygun K. Whole-organ tissue engineering: decellularization and recellularization of three-dimensional matrix scaffolds. Ann Rev Biomed Eng. 2011;13(1):27–53.CrossRefGoogle Scholar
  110. 110.
    Didie M, Christalla P, Rubart M, Muppala V, Doker S, Unsold B, et al. Parthenogenetic stem cells for tissue-engineered heart repair. J Clin Invest. 2013;123(3):1285–98.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Newcomb AE, Esmore DS, Rosenfeldt FL, Richardson M, Marasco SF. Heterotopic heart transplantation: an expanding role in the twenty-first century? Ann Thorac Surg. 2004;78(4):1345–50; (discussion 50–1).PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.SpringfieldUSA

Personalised recommendations