The Promises and Perils of Medical Nanotechnology

  • H. G. StratmannEmail author
Part of the Science and Fiction book series (SCIFICT)


Nanotechnology involves manipulating matter at the scale of atoms and molecules. More specifically it deals with materials and devices with sizes in the range of 1–100 nanometers (nm, 1 nanometer = 1 × 10−9 m), as well as processes operating at that level.) Many molecules within the human body fall within that range of sizes. For example, proteins have dimensions between 1 to 20 nm, the width of a DNA helix is about 2.5 nm, and even ribosomes, the protein-constructing organelles within cells, have diameters of about 2–4 nm. Indeed, our bodies are living models of “natural” nanotechnology in action.


Carbon Nanotubes Silver Nanoparticles Gold Nanoparticles Chemotherapeutic Agent Iron Oxide Nanoparticles 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ranganathan R, Madanmohan S, Kesavan A, Baskar G, Krishnamoorthy YR, Santosham R, et al. Nanomedicine: towards development of patient-friendly drug-delivery systems for oncological applications. Int J Nanomed. 2012;7:1043–60.Google Scholar
  2. 2.
    Kim B, Rutka J, Chan WC. Nanomedicine. N Engl J Med. 2010;363(25):2434–43.CrossRefPubMedGoogle Scholar
  3. 3.
    Wong KK, Liu XL. Nanomedicine: a primer for surgeons. Pediatr Surg Int. 2012;28(10):943–51.PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Feynman R. There’s plenty of room at the bottom. Eng Sci. 1960;23:22–36.Google Scholar
  5. 5.
    Drexler KE. Molecular engineering: an approach to the development of general capabilities for molecular manipulation. Proc Natl Acad Sci. 1981;78(9):5275–8.PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Drexler KE. Engines of creation. The coming era of nanotechnology. New York: Anchor Books; 1986.Google Scholar
  7. 7.
    Drexler KE. Nanosystems. Molecular machinery, manufacturing, and computation. New York: Wiley; 1992.Google Scholar
  8. 8.
    Hall JS. Nanofuture. What’s next for nanotechnology. Amherst: Prometheus Books; 2005.Google Scholar
  9. 9.
    Jain K. The handbook of nanomedicine. New York: Humana Press; 2008.Google Scholar
  10. 10.
    Kleinsmith L, Kish V. Energy and enzymes. Principles of cell and molecular biology, (Chapter 2). New York: HarperCollins; 1995.Google Scholar
  11. 11.
    Nanotechnology. Research and perspectives. Cambridge: The MIT Press; 1992.Google Scholar
  12. 12.
    Prospects in Nanotechnology. Toward Molecular Manufacturing. New York: Wiley; 1995.Google Scholar
  13. 13.
    Freitas R. Nanomedicine. Basic capabilities. Austin: Landes Bioscience; 1999.Google Scholar
  14. 14.
    Leduc P, Wong M, Ferreira P, Groff R, Haslinger K, Koonce M, et al. Towards an in vivo biologically inspired nanofactory. Nat Nanotechnol. 2007;2(January):3–7.CrossRefPubMedGoogle Scholar
  15. 15.
    Chou LY, Zagorovsky K, Chan WC. DNA assembly of nanoparticle superstructures for controlled biological delivery and elimination. Nat Nanotechnol. 2014;9(2):148–55.PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Toumey C. Nanobots today. Nat Nanotechnol. 2013;8(7):475–6.CrossRefPubMedGoogle Scholar
  17. 17.
    McCall MJ. Environmental, health and safety issues: nanoparticles in the real world. Nat Nanotechnol. 2011;6(10):613–4.CrossRefPubMedGoogle Scholar
  18. 18.
    Soppimath K, Betageri G. Nanostructures for cancer diagnostics and therapy. In: Gonsalves K, Halberstadt C, Laurencin C, Nair L, editors. Biomedical nanostructures. Hoboken: Wiley; 2008. pp. 409–37.Google Scholar
  19. 19.
    Labouta HI, Schneider M. Interaction of inorganic nanoparticles with the skin barrier: current status and critical review. Nanomedicine. 2013;9(1):39–54.CrossRefPubMedGoogle Scholar
  20. 20.
    Desai N. Challenges in development of nanoparticle-based therapeutics. AAPS J. 2012;14(2):282–95.PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Kim TH, Lee S, Chen X. Nanotheranostics for personalized medicine. Expert Rev Mol Diagn. 2013;13(3):257–69.PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Yu X, Valmikinathan C, Rogers A, Wang J. Nanotechnology and drug delivery. In: Gonsalves K, Halberstadt C, Laurencin C, Nair L, editors. Biomedical nanostructures. Hoboken: Wiley; 2008. pp. 93–113.Google Scholar
  23. 23.
    Guan J, He H, Yu B, Lee L. Polymeric nanoparticles and nanopore membranes for controlled drug and gene delivery.In: Gonsalves K, Halberstadt C, Laurencin C, Nair L, editors. Biomedical nanostructures. Hoboken: Wiley; 2008. pp. 115–37.Google Scholar
  24. 24.
    Wang LS, Chuang MC, Ho JA. Nanotheranostics–a review of recent publications. Int J Nanomedicine. 2012;7:4679–95.PubMedCentralPubMedGoogle Scholar
  25. 25.
    Tong R, Kohane D. Shedding light on nanomedicine. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2012;4(6):638–62.PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    Peng G, Tisch U, Adams O, Hakim M, Shehada N, Broza YY, et al. Diagnosing lung cancer in exhaled breath using gold nanoparticles. Nat Nanotechnol. 2009;4(10):669–73.CrossRefPubMedGoogle Scholar
  27. 27.
    Zhang XQ, Xu X, Bertrand N, Pridgen E, Swami A, Farokhzad OC. Interactions of nanomaterials and biological systems: Implications to personalized nanomedicine. Adv Drug Deliv Rev. 2012;64(13):1363–84.PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Madani SY, Shabani F, Dwek MV, Seifalian AM. Conjugation of quantum dots on carbon nanotubes for medical diagnosis and treatment. Int J Nanomedicine. 2013;8:941–50.PubMedCentralPubMedGoogle Scholar
  29. 29.
    Thakor A, Gambhir S. Nanooncology: The future of cancer diagnosis and therapy. CA Cancer J Clin. 2013;63:395–418.CrossRefPubMedGoogle Scholar
  30. 30.
    Waite C, Roth C. Nanoscale drug delivery systems for enhanced drug penetration into solid tumors: Current progress and opportunities. Crit Rev Biomed Eng. 2012;40(1):21–41.PubMedCentralCrossRefPubMedGoogle Scholar
  31. 31.
    Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo S, Zarghami N, Hanifehpour Y, et al. Liposome: classification, preparation, and applications. Nanoscale Research Letters. 2013;8(102):1–9.Google Scholar
  32. 32.
    Miller SM, Wang AZ. Nanomedicine in chemoradiation. Ther Deliv. 2013;4(2):239–50.PubMedCentralCrossRefPubMedGoogle Scholar
  33. 33.
    Novoselov KS, Fal’ko VI, Colombo L, Gellert PR, Schwab MG, Kim K. A roadmap for graphene. Nature. 2012;490(7419):192–200.CrossRefPubMedGoogle Scholar
  34. 34.
    Peplow M. The quest for supercarbon. Nature. 2013;503:327–9.CrossRefPubMedGoogle Scholar
  35. 35.
    Mulvey JJ, Villa CH, McDevitt MR, Escorcia FE, Casey E, Scheinberg DA. Self-assembly of carbon nanotubes and antibodies on tumours for targeted amplified delivery. Nat Nanotechnol. 2013;8(10):763–71.PubMedCentralCrossRefPubMedGoogle Scholar
  36. 36.
    Liu Y, Wang H. Nanotechnology tackles tumours. Nat Nanotechnol. 2007;2(January):20–1.CrossRefPubMedGoogle Scholar
  37. 37.
    Kostarelos K, Bianco A, Prato M. Promises, facts and challenges for carbon nanotubes in imaging and therapeutics. Nat Nanotechnol. 2009;4(10):627–33.CrossRefPubMedGoogle Scholar
  38. 38.
    Moon HK, Lee SH, Choi HC. In vivo near-infrared mediated tumor destruction by photothermal effect of carbon nanotubes. ACS Nano. 2009;3(11):3707–13.CrossRefPubMedGoogle Scholar
  39. 39.
    Grebowski J, Kazmierska P, Krokosz A. Fullerenols as a new therapeutic approach in nanomedicine. Biomed Res Int. 2013;2013:751913.PubMedCentralCrossRefPubMedGoogle Scholar
  40. 40.
    Da Silva A, Santos R, Xisto D, Alonso S, Morales M, Rocco P. Nanoparticle-based therapy for respiratory diseases. Ann Braz Acad Sci. 2013;85:137–46.CrossRefGoogle Scholar
  41. 41.
    Parboosing R, Maguire GE, Govender P, Kruger HG. Nanotechnology and the treatment of HIV infection. Viruses. 2012;4(4):488–520.PubMedCentralCrossRefPubMedGoogle Scholar
  42. 42.
    Johnson D. Nanomotors could churn inside of cancer cells to mush. 2014. Accessed 15 April 2015.
  43. 43.
    Wang W, Li S, Mair L, Ahmed S, Huang TJ, Mallouk TE. Acoustic propulsion of nanorod motors inside living cells. Angew Chem Int Ed. 2014;53:3201-4.Google Scholar
  44. 44.
    Silva G. Shorting neurons with nanotubes. Nat Nanotechnol. 2009;4(February):82–3.PubMedCentralCrossRefPubMedGoogle Scholar
  45. 45.
    Hartgerink J. New material stops bleeding in a hurry. Nat Nanotechnol. 2006;1(December):166–7.CrossRefGoogle Scholar
  46. 46.
    Koria P, Yagi H, Kitagawa Y, Megeed Z, Nahmias Y, Sheridan R, et al. Self-assembling elastin-like peptides growth factor chimeric nanoparticles for the treatment of chronic wounds. Proc Natl Acad Sci U S A. 2011;108(3):1034–9.PubMedCentralCrossRefPubMedGoogle Scholar
  47. 47.
    Ruan L, Zhang H, Luo H, Liu J, Tang F, Shi YK, et al. Designed amphiphilic peptide forms stable nanoweb, slowly releases encapsulated hydrophobic drug, and accelerates animal hemostasis. Proc Natl Acad Sci U S A. 2009;106(13):5105–10.PubMedCentralCrossRefPubMedGoogle Scholar
  48. 48.
    Higgins P, Dawson J, Walters M. Nanomedicine: nanotubes reduce stroke damage. Nat Nanotechnol. 2011;6(2):83–4.CrossRefPubMedGoogle Scholar
  49. 49.
    Dvir T, Timko BP, Brigham MD, Naik SR, Karajanagi SS, Levy O, et al. Nanowired three-dimensional cardiac patches. Nat Nanotechnol. 2011;6(11):720–5.PubMedCentralCrossRefPubMedGoogle Scholar
  50. 50.
    Dvir T, Timko BP, Kohane DS, Langer R. Nanotechnological strategies for engineering complex tissues. Nat Nanotechnol. 2011;6(1):13–22.PubMedCentralCrossRefPubMedGoogle Scholar
  51. 51.
    Jaconi ME. Nanomedicine: gold nanowires to mend a heart. Nat Nanotechnol. 2011;6(11):692–3.CrossRefPubMedGoogle Scholar
  52. 52.
    Hosseinkhani H, He W-J, Chiang C-H, Hong P-D, Yu D-S, Domb AJ, et al. Biodegradable nanoparticles for gene therapy technology. J Nanopart Res. 2013;15(7):1794.CrossRefGoogle Scholar
  53. 53.
    Namiki Y, Namiki T, Yoshida H, Ishii Y, Tsubota A, Koido S, et al. A novel magnetic crystal-lipid nanostructure for magnetically guided in vivo gene delivery. Nat Nanotechnol. 2009;4(9):598–606.CrossRefPubMedGoogle Scholar
  54. 54.
    Plank C. Nanomedicine: silence the target. Nat Nanotechnol. 2009;4(9):544–5.CrossRefPubMedGoogle Scholar
  55. 55.
    Morrison D, Dokmeci M, Demirci U, Khademhosseini A. Clinical applications of micro- and nanoscale biosensors. In: Gonsalves K, Halberstadt C, Laurencin C, Nair L, editors. Biomedical nanostructures. Wiley; 2008:439–60.Google Scholar
  56. 56.
    Dawson K, Salvati A, Lynch I. Nanoparticles reconstruct lipids. Nat Nanotechnol. 2009;4(February):84–5.CrossRefPubMedGoogle Scholar
  57. 57.
    Kleinsmith L, Kish V. Chapter 1. Prologue: cells and their molecules. Principles of cell and molecular biology, 2nd edn. New York: HarperCollins; 1995.Google Scholar
  58. 58.
    DNA Microarray Technology. 2011. Accessed 15 April 2015.
  59. 59.
    Hashimoto M, Tong R, Kohane DS. Microdevices for nanomedicine. Mol Pharm. 2013;10(6):2127–44.CrossRefPubMedGoogle Scholar
  60. 60.
    Behra R, Krug H. Nanoparticles at large. Nat Nanotechnol. 2008;3(May):253–4.CrossRefPubMedGoogle Scholar
  61. 61.
    Lee Y, Cho M. Application of nanotechnology into life science: benefit or risk. In: Gonsalves K, Halberstadt C, Laurencin C, Nair L, editors. Biomedical nanostructures. Hoboken: Wiley; 2008. pp. 491–501.Google Scholar
  62. 62.
    Minchin R. Sizing up targets with nanoparticles. Nat Nanotechnol. 2008;3(January):12–3.CrossRefPubMedGoogle Scholar
  63. 63.
    Zhao Y, Xing G, Chai Z. Are carbon nanotubes safe? Nat Nanotechnol. 2008;3(April):191–2.CrossRefPubMedGoogle Scholar
  64. 64.
    Elder A. How do nanotubes suppress T cells? Nat Nanotechnol. 2009;4(July):409–10.CrossRefPubMedGoogle Scholar
  65. 65.
    Kanwar JR, Sriramoju B, Kanwar RK. Neurological disorders and therapeutics targeted to surmount the blood-brain barrier. Int J Nanomedicine. 2012;7:3259–78.PubMedCentralCrossRefPubMedGoogle Scholar
  66. 66.
    Dobrovolskaia MA, Germolec DR, Weaver JL. Evaluation of nanoparticle immunotoxicity. Nat Nanotechnol. 2009;4(7):411–4.CrossRefPubMedGoogle Scholar
  67. 67.
    Bhabra G, Sood A, Fisher B, Cartwright L, Saunders M, Evans WH, et al. Nanoparticles can cause DNA damage across a cellular barrier. Nat Nanotechnol. 2009;4(12):876–83.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.SpringfieldUSA

Personalised recommendations