Advertisement

Sex in Science Fiction

  • H. G. StratmannEmail author
Chapter
Part of the Science and Fiction book series (SCIFICT)

Abstract

Many science fiction works involve sexual behavior as a primary or at least important plot element. H. G. Wells’ novel In the Days of the Comet (1906) describes changes in sexual attitudes resulting from humanity’s exposure to the gases from a passing green comet. Aldous Huxley’s Brave New World (1932) is an early example of a future society in which sexual activity is officially divorced from reproduction. Many of Robert A. Heinlein’s later works such as Stranger in a Strange Land (1961) and I Will Fear No Evil (1970) deal extensively with sex-related issues. Ursula K. Le Guin’s The Left Hand of Darkness (1969) depicts a space-based human civilization whose members are, similarly to some fish (e.g. clownfish and angelfish) and other animals, “ambisexual” and able at times to assume either male or female reproductive attributes.

Keywords

Menstrual Cycle Sexual Reproduction Fallopian Tube Sperm Cell Asexual Reproduction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Stratmann HG, Stratmann M. Sex and your heart health. Springfield: Starship Press, LLC; 2007.Google Scholar
  2. 2.
    Clément G, Slenzka K. Animals and plants in space. In: Clément G, Slenzka K, editors. Fundamentals of space biology. Sacramento: Microcosm Press and Springer; 2006. pp. 51–80.CrossRefGoogle Scholar
  3. 3.
    Davenport ML. Approach to the patient with Turner syndrome. J Clin Endocrinol Metab. 2010;95(4):1487–95.CrossRefPubMedGoogle Scholar
  4. 4.
    Groth KA, Skakkebaek A, Host C, Gravholt CH, Bojesen A. Clinical review: Klinefelter syndrome–a clinical update. J Clin Endocrinol Metab. 2013;98(1):20–30.CrossRefPubMedGoogle Scholar
  5. 5.
    Kim I, Khadilkar A, Ko E, Sabanegh E. 47, XYY syndrome and male infertility. Rev Urol. 2013;15:188–96.PubMedCentralPubMedGoogle Scholar
  6. 6.
    Otter M, Schrander-Stumpel CT, Curfs LM. Triple X syndrome: a review of the literature. Eur J Hum Genet. 2010;18(3):265–71.PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Tartaglia NR, Howell S, Sutherland A, Wilson R, Wilson L. A review of trisomy X (47,XXX). Orphanet J Rare Dis. 2010;5:8.PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Pandey S, Shetty A, Hamilton M, Bhattacharya S, Maheshwari A. Obstetric and perinatal outcomes in singleton pregnancies resulting from IVF/ICSI: a systematic review and meta-analysis. Hum Reprod Update. 2012;18(5):485–503.CrossRefPubMedGoogle Scholar
  9. 9.
    Assisted Reproductive Technologies. A guide for patients. 2014. http://www.reproductivefacts.org/uploadedFiles/ASRM_Content/Resources/Patient_Resources/Fact_Sheets_and_Info_Booklets/ART.pdf. Accessed 15 April 2015.
  10. 10.
    Bulletti C, Palagiano A, Pace C, Cerni A, Borini A, de Ziegler D. The artificial womb. Ann NY Acad Sci. 2011;1221:124–8.Google Scholar
  11. 11. I
    Pak S, Song C, So G, Jang C, Lee K, Kim J. Extrauterine incubation of fetal goats applying the extracorporeal membrane oyxgenation via umbilical artery and vein. J Korean Med Sci. 2002;17:663–8.PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Sakata M, Hisano K, Okada M, Yasufuku M. A new artificial placenta with a centrifugal pump: long-term total extrauterine support of goat fetuses. J Thorac Cardiovasc Surg. 1998;115:1023–31.CrossRefPubMedGoogle Scholar
  13. 13.
    Briggs R, King TJ. Transplantation of living nuclei from blastula cells into enucleated frogs’ eggs. Proc Natl Acad Sci U S A. 1952;38:455–63.Google Scholar
  14. 14.
    Wilmut I, Schnieke A, McWhir J, Kind A, Campbell K. Viable offspring derived from fetal and adult mammalian cells. Nature. 1997;385:810–3. (February 27)CrossRefPubMedGoogle Scholar
  15. 15.
    Institute NHGR. Cloning fact sheet. 2014. http://www.genome.gov/25020028. Accessed 15 April 2015.
  16. 16.
    Niemann H, Lucas-Hahn A. Somatic cell nuclear transfer cloning: practical applications and current legislation. Reprod Domest Anim. 2012;47(Suppl 5):2–10.CrossRefPubMedGoogle Scholar
  17. 17.
    Whitfield J. Obituary: Dolly the sheep. 2003. http://www.nature.com/news/2003/030218/full/news030217-6.html. Accessed 15 April 2015.
  18. 18.
    Wilmut I, Beaujean N, de Sousa P, Dinnyes A, King TJ, Paterson L, et al. Somatic cell nuclear transfer. Nature. 2002;419:583–6.CrossRefPubMedGoogle Scholar
  19. 19.
    Thuan N, Kishigami S, Wakayama T. How to improve the success rate of mouse cloning technology. J Reprod Dev. 2010;56:20–30.CrossRefPubMedGoogle Scholar
  20. 20.
    Ogura A, Inoue K, Wakayama T. Recent advancements in cloning by somatic cell nuclear transfer. Philos Trans R Soc Lond B Biol Sci. 2013;368(1609):20110329.PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Kues W, Rath D, Niemann H. Reproductive biotechnology goes genomic. CAB Rev. 2008;3:1–18.CrossRefGoogle Scholar
  22. 22.
    Wakayama S, Kohda T, Obokata H, Tokoro M, Li C, Terashita Y, et al. Successful serial recloning in the mouse over multiple generations. Cell Stem Cell. 2013;12(3):293–7.CrossRefPubMedGoogle Scholar
  23. 23.
    Chung Young G, Eum Jin H, Lee Jeoung E, Shim Sung H, Sepilian V, Hong Seung W, et al. Human somatic cell nuclear transfer using adult cells. Cell Stem Cell. 2014;14(6):777–80.CrossRefPubMedGoogle Scholar
  24. 24.
    Tachibana M, Amato P, Sparman M, Gutierrez Nuria M, Tippner-Hedges R, Ma H, et al. Human embryonic stem cells derived by somatic cell nuclear transfer. Cell. 153(6):1228–38.Google Scholar
  25. 25.
    Yamada M, Johannesson B, Sagi I, Burnett LC, Kort DH, Prosser RW, et al. Human oocytes reprogram adult somatic nuclei of a type 1 diabetic to diploid pluripotent stem cells. Nature. 2014;510:533–6.CrossRefPubMedGoogle Scholar
  26. 26.
    Baker M. Stem cells made by cloning adult humans. 2014. http://www.nature.com/news/stem-cells-made-by-cloning-adult-humans-1.15107. Accessed 15 April 2015.
  27. 27.
    Stratmann HG. Sex in space: The fantasy and the reality. Analog Sci Fict Fact. 1998;118(2):45–59.Google Scholar
  28. 28.
    Woodmansee L. Sex in space. Burlington: CG Publishing, Inc.; 2006.Google Scholar
  29. 29.
    Buckey JC. Space physiology. Oxford: Oxford University Press; 2006.Google Scholar
  30. 30.
    Kanas N, Manzey D. Space psychology and psychiatry. 2nd ed. Berlin: Springer; 2010.Google Scholar
  31. 31.
    Longnecker D, Molins R. A risk reduction strategy for human exploration of space. Washington, D.C.: The National Academies Press; 2006. http://www.nap.edu/catalog/11467/a-risk-reduction-strategy-for-human-exploration-of-space-a. Accessed 6 May 2015.
  32. 32.
    Amann R, Deaver D, Zirkin B, Grills G, Sapp W, Veeramachaneni D, et al. Effects of microgravity or simulated launch on testicular function in rats. J Appl Physiol. 1992;73(2):S174–85.Google Scholar
  33. 33.
    Tou J. Models to study gravitational biology of mammalian reproduction. Biol Reprod. 2002;67(6):1681–7.CrossRefPubMedGoogle Scholar
  34. 34.
    Planel H. Space and life. An introduction to space biology and medicine. Boca Raton: CRC Press; 2004.CrossRefGoogle Scholar
  35. 35.
    Genital Herpes–CDC Fact Sheet. http://www.cdc.gov/std/herpes/STDFact-Herpes.htm. Accessed 6 May 2015.
  36. 36.
    Clément G. Fundamentals of space medicine. 2nd ed. Berlin: Springer; 2011.CrossRefGoogle Scholar
  37. 37.
    Horn E. Animal development in microgravity. In: Clément G, Slenzka K, editors. Fundamentals of space biology. Sacramento: Microcosm Press and Springer; 2006. pp. 171–226.CrossRefGoogle Scholar
  38. 38.
    Wolgemuth D, Murashov A. Models and molecular approaches to assessing the effects of the microgravity environment on vertebrate development. ASGSB Bull. 1995;8(2):63–71.PubMedGoogle Scholar
  39. 39.
    Taddeo T, Armstrong C. Spaceflight medical systems. In: Barratt M, Pool SL, editors. Principles of clinical medicine for space flight. Berlin: Springer; 2008. pp. 69–100.CrossRefGoogle Scholar
  40. 40.
    Jennings R, Baker E. Gynecologic and reproductive concerns. In: Barratt M, Pool SL, editors. Principles of clinical medicine for space flight. Berlin: Springer; 2008. pp. 381–90.CrossRefGoogle Scholar
  41. 41.
    Williams P, Fletcher S. Health effects of prenatal radiation exposure. Am Fam Physician. 2010;82:488–93.PubMedGoogle Scholar
  42. 42.
    Mole R. Consequences of pre-natal radiation exposure for post-natal development. A review. Int J Radiat Biol. 1982;42:1–12.CrossRefGoogle Scholar
  43. 43.
    Otake M, Schull W. In utero exposure to A-bomb radiation and mental retardation; a reassessment. Br J Radiol. 1984;57:409–14.CrossRefPubMedGoogle Scholar
  44. 44.
  45. 45.
    Morey-Holton E, Hill E, Souza K. Animals and spaceflight: from survival to understanding. J Musculoskelet Neuronal Interact. 2007;7:17–25.PubMedGoogle Scholar
  46. 46.
    Ronca AE, Fritzsch B, Bruce LL, Alberts JR. Orbital spaceflight during pregnancy shapes function of mammalian vestibular system. Behav Neurosci. 2008;122(1):224–32.PubMedCentralCrossRefPubMedGoogle Scholar
  47. 47.
    Hughes C. Challenges in DNA testing and forensic analysis of hair samples. 2013. http://www.forensicmag.com/articles/2013/04/challenges-dna-testing-and-forensic-analysis-hair-samples. Accessed 15 April 2015.

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.SpringfieldUSA

Personalised recommendations