Cytochrome P450 Enzymes and Electrochemistry: Crosstalk with Electrodes as Redox Partners and Electron Sources

  • Victoria V. ShumyantsevaEmail author
  • Tatiana Bulko
  • Evgeniya Shich
  • Anna Makhova
  • Alexey Kuzikov
  • Alexander Archakov
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 851)


The functional significance of cytochrome P450 (P450) enzymes includes their ability to catalyze the biotransformation of xenobiotics (foreign compounds) and endogenous compounds. P450 enzymes play an important role in the detoxification of exogenous bioactive compounds and hydrophobic xenobiotics (e.g. carcinogens, drugs, environment pollutants, food supplements, medicines, plant products) and in the biotransformation of endogenous bioactive compounds (e.g. amino acids, cholesterol, eicosanoids, saturated/unsaturated fatty acids, melatonin, steroid hormones). Electrode/P450 systems are analyzed in terms of the mechanisms underlying P450-catalyzed reactions. Bioelectrocatalysis-based screening of potential substrates or inhibitors of P450 enzymes, the stoichiometry of the electrocatalytic cycle, oxidation-reduction (redox) thermodynamics, and the peroxide shunt pathway are described. Electrochemical techniques are utilized for investigating the influence of (1) the vitamin B group, (2) vitamins (e.g. vitamins A and B) and antioxidants (e.g. taurine), and (3) drugs and antioxidants (e.g. mexidol, ethoxidol) on biocatalysis using P450 enzymes, and on the metabolism of drugs catalyzed by P450 3A4. The characteristics, performance and potential applications of P450 electrochemical systems are also discussed.


Cytochrome P450 Electrochemistry Enzyme electrode Thermodynamics Antioxidants 



The work is done in the framework of the State Academies of Sciencies fundamenal research program for 2013–2020.


  1. 1.
    Archakov AA, Bachmanova GI (1990) Cytochrome P450 and active oxygen. Taylor & Francis, LondonGoogle Scholar
  2. 2.
    Hrycay EG, Bandiera SM (2012) The monooxygenase, peroxidase, and peroxygenase properties of cytochrome P450. Arch Biochem Biophys 522:71–89CrossRefPubMedGoogle Scholar
  3. 3.
    Lewis DFV (2001) Guide to cytochromes P450: structure and function. Taylor & Francis, LondonCrossRefGoogle Scholar
  4. 4.
    Ortiz de Montellano PR (2005) Cytochrome P450: structure, mechanism, and biochemistry, 3rd edn. Kluwer Academic/Plenum Publishers, New YorkCrossRefGoogle Scholar
  5. 5.
    Zanger U, Schwab M (2013) Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther 138:103–141CrossRefPubMedGoogle Scholar
  6. 6.
    Shumyantseva V, Bulko T, Suprun E, Chalenko Y, Vagin M, Rudakov Y, Shatskaya M, Archakov A (2011) Electrochemical investigations of cytochromes P450. Biochim Biophys Acta 1814:94–101CrossRefPubMedGoogle Scholar
  7. 7.
    Shumyantseva V, Suprun E, Bulko T, Chalenko Y, Archakov A (2012) Electrochemical sensor systems for medicine. In: Rozlosnik N (ed) Nanomedicine in diagnostics, 1st edn. CRC Press/Taylor & Francis, St. Helier, pp 68–95CrossRefGoogle Scholar
  8. 8.
    Pandey A, Flück C (2013) NADPH P450 oxidoreductase: structure, function, and pathology of diseases. Pharmacol Ther 138:229–254CrossRefPubMedGoogle Scholar
  9. 9.
    Schneider E, Clark D (2013) Cytochrome P450 (CYP) enzymes and the development of CYP biosensors. Biosens Bioelectron 39:1–13CrossRefPubMedGoogle Scholar
  10. 10.
    Yarman A, Wollenberger U, Scheller FW (2013) Sensors based on cytochrome P450 and CYP mimicking systems. Electrochim Acta 110:63–72CrossRefGoogle Scholar
  11. 11.
    Bellamine A, Mangla A, Nes WD, Waterman MR (1999) Characterization and catalytic properties of the sterol 14α-demethylase from Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 96:8937–8942CrossRefPubMedCentralPubMedGoogle Scholar
  12. 12.
    Pikuleva IA (2006) Cytochrome P450s and cholesterol homeostasis. Pharmacol Ther 112:761–773CrossRefPubMedGoogle Scholar
  13. 13.
    Hlavica P (2009) Assembly of non-natural electron transfer conduits in the cytochrome P450 system: a critical assessment and update of artificial redox constructs amenable to exploitation in biotechnological areas. Biotechnol Adv 27:103–121CrossRefPubMedGoogle Scholar
  14. 14.
    Colas H, Ewen K, Hannemann F, Bistolas N, Wollenberger U, Bernhardt R, de Oliveira P (2012) Direct and mediated electrochemical response of the cytochrome P450 106A2 from Bacillus megaterium ATCC 13368. Bioelectrochemistry 87:71–77CrossRefPubMedGoogle Scholar
  15. 15.
    Khatri Y, Girhard M, Romankiewicz A, Urlacher VB, Bernhardt R (2010) Regioselective hydroxylation of norisoprenoids by CYP109D1 from Sorangium cellulosum So ce56. Appl Microbiol Biotechnol 88:485–495CrossRefPubMedGoogle Scholar
  16. 16.
    Estabrook RW, Faulkner KM, Shet MS, Fisher CW (1996) Application of electrochemistry for P450-catalyzed reactions. Methods Enzymol B 272:44–51Google Scholar
  17. 17.
    Bistolas N, Wollenberger U, Jung C, Scheller FW (2005) Cytochrome P450 biosensors − a review. Biosens Bioelectron 20:2408–2423CrossRefPubMedGoogle Scholar
  18. 18.
    Shumyantseva V, Bulko T, Archakov A (2005) Electrochemical reduction of cytochrome P450 as an approach to the construction of biosensors and bioreactors. J Inorg Biochem 99:1051–1063CrossRefPubMedGoogle Scholar
  19. 19.
    Udit AK, Gray HB (2005) Electrochemistry of heme-thiolate proteins. Biochem Biophys Res Commun 338:470–476CrossRefPubMedGoogle Scholar
  20. 20.
    Baj-Rossi C, Rezzonico Jost T, Cavallini A, Grassi F, De Michelli G, Carrara S (2014) Continuous monitoring of Naproxen by a cytochrome P450-based electrochemical sensor. Biosens Bioelectron 53:283–287CrossRefPubMedGoogle Scholar
  21. 21.
  22. 22.
    Nebert DW, Russel DW (2002) Clinical importance of the cytochromes P450. Lancet 360:1155–1162CrossRefPubMedGoogle Scholar
  23. 23.
    Guengerich FP (2008) Cytochrome P450 and chemical toxicology. Chem Res Toxicol 21:70–83CrossRefPubMedGoogle Scholar
  24. 24.
    Persson KP, Ekehed S, Otter C, Lutz M, VcPheat J, Masomirembwa CM, Andersson TB (2006) Evaluation of human liver slices and reporter gene assays as systems for predicting the cytochrome P450 induction potential of drugs in vivo in humans. Pharmacol Res 23:56–66CrossRefGoogle Scholar
  25. 25.
    Tupeinen M, Jouko U, Jorma J, Olavi P (2005) Multiple P450 substrates in a single run: rapid and comprehensive in vitro interaction assay. Eur J Pharm Res 24:123–132Google Scholar
  26. 26.
    Alonso-Lomillo MA, Gonzalo-Ruiz J, Domínguez-Renedo O, Muñoz FJ, Arcos-Martínez MJ (2008) CYP450 biosensors based on gold chips for antiepileptic drugs determination. Biosens Bioelectron 23:1733–1736CrossRefPubMedGoogle Scholar
  27. 27.
    Liu S, Peng L, Yang X, Wu Y, He L (2008) Electrochemistry of cytochrome P450 enzyme on nanoparticle-containing membrane-coated electrode and its application for drug sensing. Anal Biochem 375:209–216CrossRefPubMedGoogle Scholar
  28. 28.
    Zhang L, Liu X, Wang C, Liu X, Cheng G, Wu Y (2010) Expression, purification and direct electrochemistry of cytochrome P450 6A1 from the house fly, Musca domestica. Protein Expr Purif 71:74–78CrossRefPubMedGoogle Scholar
  29. 29.
    Handratta VD, Vasaitis TS, Njar VC, Gediya LK, Kataria R, Chopra P, Newman D, Farquhar R, Guo Z, Qiu Y, Brodie AM (2005) Novel C-17-heteroaryl steroidal CYP17 inhibitors/antiandrogens: synthesis, in vitro biological activity, pharmacokinetics, and antitumor activity in the LAPC4 human prostate cancer xenograft model. J Med Chem 48:2972–2984CrossRefPubMedGoogle Scholar
  30. 30.
    Bruno RD, Njar CO (2007) Targeting cytochrome P450 enzymes: a new approach in anti-cancer drug development. Bioorg Med Chem 15:5047–5060CrossRefPubMedCentralPubMedGoogle Scholar
  31. 31.
    Sadeghi S, Ferrero S, Di Nardo G, Gilardi G (2012) Drug-drug interactions and cooperative effects detected in electrochemically driven human cytochrome P450 3A4. Bioelectrochemistry 86:87–91CrossRefPubMedGoogle Scholar
  32. 32.
    Carrara S, Shumyantseva V, Archakov A, Samorì B (2008) Screen-printed electrodes based on carbon nanotubes and cytochrome P450scc for highly-sensitive cholesterol. Biosens Bioelectron 24:148–150CrossRefPubMedGoogle Scholar
  33. 33.
    Shumyantseva VV, Bulko TV, Kuznetsova GP, Lisitsa AV, Ponomarenko EA, Karuzina II, Archakov AI (2007) Electrochemical reduction of sterol-14α-demethylase from Mycobacterium tuberculosis (CYP51b1). Biochem Mosc 72:658–663CrossRefGoogle Scholar
  34. 34.
    Shumyantseva VV, Bulko TV, Misharin A, Archakov AI (2011) Screening of potential substrates or inhibitors of cytochrome P450 17A1 (CYP17A1) by electrochemical methods. Biochem (Mosc) Suppl B Biomed Chem 5:55–59Google Scholar
  35. 35.
    Shumyantseva VV, Bulko TV, Rudakov YO, Kuznetsova GP, Samenkova NF, Lisitsa AV, Karuzina II, Archakov AI (2007) Electrochemical properties of cytochromes P450 using nanostructured electrodes: direct electron transfer and electrocatalysis. J Inorg Biochem 101:859–865CrossRefPubMedGoogle Scholar
  36. 36.
    Lisitsa AV, Gusev SA, Karusina II, Archakov AI, Koymans L (2001) Cytochrome P450 database. SAR QSAR. Environ Res 12:359–366Google Scholar
  37. 37.
    Foti RS, Rock DA, Wienkers LC, Wahlstrom JL (2010) Selection of alternative CYP3A4 probe substrates for clinical drug interaction studies using in vitro data and in vivo simulation. Drug Metab Dispos 38:981–987CrossRefPubMedGoogle Scholar
  38. 38.
    Rudakov YO, Shumyantseva VV, Bulko TV, Suprun EV, Kuznetsova GP, Samenkova NF, Archakov AI (2008) Stoichiometry of electrocatalytic cycle of cytochrome P450 2B4. J Inorg Biochem 102:2020–2025CrossRefPubMedGoogle Scholar
  39. 39.
    Liu X, Huang Y, Zhang W, Fan G, Fan C, Li G (2005) Electrochemical investigation of redox thermodynamics of immobilized myoglobin: ionic and ligation effects. Langmuir 21:375–378CrossRefPubMedGoogle Scholar
  40. 40.
    Laviron E (1979) General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Electroanal Chem 101:19–28CrossRefGoogle Scholar
  41. 41.
    Liu J, Guo C, Li CM, Li Y, Chi Q, Huang X, Liao L, Yu T (2009) Carbon-decorated ZnO nanowire array: a novel platform for direct electrochemistry of enzymes and biosensing applications. Electrochem Commun 11:202–205CrossRefGoogle Scholar
  42. 42.
    He X, Zhu L (2006) Direct electrochemistry of hemoglobin in cetylpyridinium bromide film: redox thermodynamics and electrocatalysis to nitric oxide. Electrochem Commun 8:615–620CrossRefGoogle Scholar
  43. 43.
    Battistuzzi G, Borsari M, Rossi G, Sola M (1998) Effects of solvent on the redox properties of cytochrome c: cyclic voltammetry and 1H NMR experiments in mixed water-dimethylsulfoxide solutions. Inorg Chim Acta 272:168–175CrossRefGoogle Scholar
  44. 44.
    Borsari M, Bellei M, Tavagnacco C, Peressini S, Millo D, Costa G (2003) Redox thermodynamics of cytochrome c in mixed water–organic solvent solutions. Inorg Chim Acta 349:182–188CrossRefGoogle Scholar
  45. 45.
    Shumyantseva VV, Ivanov YD, Bistolas N, Scheller FW, Archakov AI, Wollenberger U (2004) Direct electron transfer of cytochrome P450 2B4 at electrodes modified with non-ionic detergent and colloidal clay nanoparticles. Anal Chem 76:6046–6052CrossRefPubMedGoogle Scholar
  46. 46.
    Johnson DL, Lewis BC, Elliot DJ, Miners JO, Martin LL (2005) Electrochemical characterization of the human cytochrome P450 CYP2C9. Biochem Pharmacol 69:1533–1541CrossRefPubMedGoogle Scholar
  47. 47.
    Joseph S, Rusling JF, Lvov YM, Friedberg T, Fuhr U (2003) An amperometric biosensor with human CYP3A4 as a novel drug screening tool. Biochem Pharmacol 65:1817–1826CrossRefPubMedGoogle Scholar
  48. 48.
    Hagen KD, Gillan J, Im SC, Landefeld S, Meal G, Hiley M, Waskell L, Hill M, Udit A (2013) Electrochemistry of mammalian cytochrome P450 2B4 indicates tunable thermodynamic parameters in surfactant films. J Inorg Biochem 129:30–34CrossRefPubMedGoogle Scholar
  49. 49.
    Kanaeva IP, Dedinskii IR, Scotselyas ED, Krainev IG, Guleva IV, Sevryukova IF, Koen YM, Kuznetsova GP, Bachmanova GI, Archakov AI (1992) Comparative study of monomeric reconstituted and membrane microsomal monooxygenase systems of the rabbit liver: I. Properties of NADPH-cytochrome P450 reductase and cytochrome P450 LM2 (2B4) monomers. Arch Biochem Biophys 298:395–402CrossRefPubMedGoogle Scholar
  50. 50.
    Girhard M, Kunigk E, Tihovsky S, Shumyantseva VV, Urlacher VB (2013) Light-driven biocatalysis with cytochrome P450 peroxygenases. Biotechnol Appl Biochem 60:112–118CrossRefGoogle Scholar
  51. 51.
    Schenkman JB, Jansson I (2003) The many roles of cytochrome b 5. Pharmacol Ther 97:139–152CrossRefPubMedGoogle Scholar
  52. 52.
    Im SC, Waskell L (2011) The interaction of microsomal cytochrome P450 2B4 with its redox partners, cytochrome P450 reductase and cytochrome b 5. Arch Biochem Biophys 507:144–153CrossRefPubMedCentralPubMedGoogle Scholar
  53. 53.
    Storbeck KH, Swart A, Goosen P, Swart P (2013) Cytochrome b5: novel roles in steroidogenesis. Mol Cell Endocrinol 371:87–99CrossRefPubMedGoogle Scholar
  54. 54.
    Carrara S, Cavallini A, Erokhin V, Albini GD, De Micheli G (2011) Multi-panel drugs detection in human serum for personalized therapy. Biosens Bioelectron 26:3914–3919CrossRefPubMedGoogle Scholar
  55. 55.
    Zhou S, Xue C, Yu X, Li C, Wang G (2007) Clinically important drug interactions potentially involving mechanism-based inhibition of cytochrome P450 3A4 and the role of therapeutic drug monitoring. Ther Drug Monit 29:687–708CrossRefPubMedGoogle Scholar
  56. 56.
    Hisata A, Ohno Y, Yamamoto T, Suzuki H (2010) Prediction of pharmacokinetic drug–drug interaction caused by changes in cytochrome P450 activity using in vivo information. Pharmacol Ther 125:230–248CrossRefGoogle Scholar
  57. 57.
    Zhang L, Reynolds KS, Zhao P, Huang SM (2010) Drug interactions evaluation: an integrated part of risk assessment of therapeutics. Toxicol Appl Pharmacol 243:134–145CrossRefPubMedGoogle Scholar
  58. 58.
    Fantuzzi A, Capria E, Mak L, Dodhia HS, Sadeghi J, Collins S, Somers G, Huq E, Gilardi G (2010) An electrochemical microfluidic platform for human P450 drug metabolism profiling. Anal Chem 82:10222–10227CrossRefPubMedGoogle Scholar
  59. 59.
    Fantuzzi A, Mak L, Capria E, Dodhia V, Panicco P, Collins S, Gilardi G (2011) A new standardized electrochemical array for drug metabolic profiling with human cytochromes P450. Anal Chem 83:3831–3839CrossRefPubMedGoogle Scholar
  60. 60.
    Shen S, Marchick MR, Davis MR, Doss GA, Pohl LR (1999) Metabolic activation of diclofenac by human cytochrome P450 3A4: role of 5-hydroxydiclofenac. Chem Res Toxicol 12:214–222CrossRefPubMedGoogle Scholar
  61. 61.
    Makhova A, Shumyantseva V, Shich E, Bulko T, Kukes V, Sizova O, Ramenskaya G, Usanov S, Archakov A (2011) Electroanalysis of cytochrome P450 3A4 catalytic properties with nanostructured electrodes: the influence of vitamin B group on diclofenac metabolism. BioNanoSci 1:46–52CrossRefGoogle Scholar
  62. 62.
    Yasui H, Hayashi S, Sakurai H (2005) Possible involvement of singlet oxygen species as multiple oxidants in P450 catalytic reactions. Drug Metab Pharmacokinet 20:1–13CrossRefPubMedGoogle Scholar
  63. 63.
    Guengerich FP (1978) Destruction of heme and hemoproteins mediated by liver microsomal reduced nicotinamide adenine dinucleotide phosphate-cytochrome P-450 reductase. Biochemistry 17:3633–3639CrossRefPubMedGoogle Scholar
  64. 64.
    Bondy S, Naderi S (1994) Contribution of hepatic cytochrome P450 systems to the generation of reactive oxygen species. Biochem Pharmacol 48:155–159CrossRefPubMedGoogle Scholar
  65. 65.
    Shumyantseva V, Makhova A, Bulko T, Kuzikov A, Shich E, Suprun E, Kukes V, Usanov S, Archakov A (2013) The dose-dependent influence of vitamins with antioxidant properties on electrochemically-driven cytochromes P450 catalysis. Oxid Antioxid Med Sci 2:113–117Google Scholar
  66. 66.
    Jeong J, Kim C, Yoon J (2009) The effect of electrode material on the generation of oxidants and microbial inactivation in the electrochemical disinfection processes. Water Res 43:895–901CrossRefPubMedGoogle Scholar
  67. 67.
    Gade S, Bhattacharya S, Manoj K (2012) Redox active molecules cytochrome c and vitamin C enhance heme-enzyme peroxidations by serving as non-specific agents for redox relay. Biochem Biophys Res Commun 419:211–214CrossRefPubMedGoogle Scholar
  68. 68.
    Bian C, Xiong H, Zhang X, Ye Y, Gu H, Wang S (2012) Electrochemical detection of BSA damage induced by Fenton reagents in room temperature ionic liquid. Sensors Actuators B Chem 169:368–373CrossRefGoogle Scholar
  69. 69.
    Matsuda H, Kinoshita K, Shimida A, Takahashi K, Fukuen S, Fukuda T, Takahashi K, Yamamoto I, Azuma J (2002) Taurine modulates induction of cytochrome P450 3A4 mRNA by rifampicin in the HepG2 cell line. Biochim Biophys Acta 1593:93–98CrossRefPubMedGoogle Scholar
  70. 70.
    Nakamura T, Ogasawara M, Koyama I, Nemoto M, Yoshida T (1993) The protective effect of taurine on the biomembrane against damage produced by oxygen radicals. Biol Pharm Bull 16:970–972CrossRefPubMedGoogle Scholar
  71. 71.
    Welsh O, Vera-Cabrera L, Welsh E (2010) Onychomycosis. Clin Dermatol 28:151–159CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Victoria V. Shumyantseva
    • 1
    Email author
  • Tatiana Bulko
    • 1
  • Evgeniya Shich
    • 2
  • Anna Makhova
    • 2
  • Alexey Kuzikov
    • 1
  • Alexander Archakov
    • 3
  1. 1.Laboratory of BioelectrochemistryInstitute of Biomedical ChemistryMoscowRussia
  2. 2.The First Moscow State Medical UniversityMoscowRussia
  3. 3.Institute of Biomedical ChemistryMoscowRussia

Personalised recommendations