Skip to main content

Use of Chemical Auxiliaries to Control P450 Enzymes for Predictable Oxidations at Unactivated C-H Bonds of Substrates

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 851))

Abstract

Cytochrome P450 enzymes (P450s) have the ability to oxidize unactivated C-H bonds of substrates with remarkable regio- and stereoselectivity. Comparable selectivity for chemical oxidizing agents is typically difficult to achieve. Hence, there is an interest in exploiting P450s as potential biocatalysts. Despite their impressive attributes, the current use of P450s as biocatalysts is limited. While bacterial P450 enzymes typically show higher activity, they tend to be highly selective for one or a few substrates. On the other hand, mammalian P450s, especially the drug-metabolizing enzymes, display astonishing substrate promiscuity. However, product prediction continues to be challenging. This review discusses the use of small molecules for controlling P450 substrate specificity and product selectivity. The focus will be on two approaches in the area: (1) the use of decoy molecules, and (2) the application of substrate engineering to control oxidation by the enzyme.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Guengerich FP (2005) Human cytochrome P450 enzymes. In: Ortiz de Montellano PR (ed) Cytochrome P450: structure, mechanism, and biochemistry, 3rd edn. Kluwer Academic/Plenum Publishers, New York, pp 377–530

    Chapter  Google Scholar 

  2. Bernhardt R (2006) Cytochromes P450 as versatile biocatalysts. J Biotechnol 124:128–145

    Article  CAS  PubMed  Google Scholar 

  3. Gillam EMJ (2005) Exploring the potential of xenobiotic-metabolising enzymes as biocatalysts: evolving designer catalysts from polyfunctional cytochrome P450 enzymes. Clin Exp Pharmacol Physiol 32:147–152

    Article  CAS  PubMed  Google Scholar 

  4. Guengerich FP (2001) Common and uncommon cytochrome P450 reactions related to metabolism and chemical toxicity. Chem Res Toxicol 14:611–650

    Article  CAS  PubMed  Google Scholar 

  5. Manley JB, Anastas PT, Cue BW (2008) Frontiers in Green Chemistry: meeting the grand challenges for sustainability in R&D and manufacturing. J Clean Prod 16:743–750

    Article  Google Scholar 

  6. Sheldon RA (2008) E factors, green chemistry and catalysis: an odyssey. Chem Commun 29:3352–3365

    Article  Google Scholar 

  7. Sheldon RA (2007) The E factor: fifteen years on. Green Chem 9:1273–1283

    Article  CAS  Google Scholar 

  8. Anastas P, Eghbali N (2010) Green chemistry: principles and practice. Chem Soc Rev 39:301–312

    Article  CAS  PubMed  Google Scholar 

  9. Godula K, Sames D (2006) C-H bond functionalization in complex organic synthesis. Science 312:67–72

    Article  CAS  PubMed  Google Scholar 

  10. Che C, Lo VK, Zhou C, Huang J (2011) Selective functionalisation of saturated C-H bonds with metalloporphyrin catalysts. Chem Soc Rev 40:1950–1975

    Article  CAS  PubMed  Google Scholar 

  11. Yamaguchi J, Yamaguchi AD, Itami K (2012) C-H bond functionalization: emerging synthetic tools for natural products and pharmaceuticals. Angew Chem Int Ed 51:8960–9009

    Article  CAS  Google Scholar 

  12. Costas M (2011) Selective C-H oxidation catalyzed by metalloporphyrins. Coord Chem Rev 255:2912–2932

    Article  CAS  Google Scholar 

  13. Chen MS, White MC (2007) A predictably selective aliphatic C-H oxidation reaction for complex molecule synthesis. Science 318:783–787

    Article  CAS  PubMed  Google Scholar 

  14. Chen MS, White MC (2010) Combined effects on selectivity in Fe-catalyzed methylene oxidation. Science 327:566–571

    Article  CAS  PubMed  Google Scholar 

  15. Brodsky BH, Du Bois J (2005) Oxaziridine-mediated catalytic hydroxylation of unactivated 3 ° C−H bonds using hydrogen peroxide. J Am Chem Soc 127:15391–15393

    Article  CAS  PubMed  Google Scholar 

  16. Rella MR, Williard PG (2007) Oxidation of peptides by methyl(trifluoromethyl)dioxirane: the protecting group matters. J Org Chem 72:525–531

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Guengerich FP (2008) Cytochrome P450 and chemical toxicology. Chem Res Toxicol 21:70–83

    Article  CAS  PubMed  Google Scholar 

  18. Guengerich FP (1999) Cytochrome P-450 3A4: regulation and role in drug metabolism. Annu Rev Pharmacol Toxicol 39:1–17

    Article  CAS  PubMed  Google Scholar 

  19. Munro AW, Girvan HM, Mason AE, Dunford AJ, McLean KJ (2013) What makes a P450 tick? Trends Biochem Sci 38:140–150

    Article  CAS  PubMed  Google Scholar 

  20. Julsing MK, Cornelissen S, Bühler B, Schmid A (2008) Heme-iron oxygenases: powerful industrial biocatalysts? Curr Opin Chem Biol 12:177–186

    Article  CAS  PubMed  Google Scholar 

  21. Loida PJ, Sligar SG (1993) Engineering cytochrome P-450cam to increase the stereospecificity and coupling of aliphatic hydroxylation. Protein Eng 6:207–212

    Article  CAS  PubMed  Google Scholar 

  22. Gillam EMJ (2007) Extending the capabilities of nature’s most versatile catalysts: directed evolution of mammalian xenobiotic-metabolizing P450s. Arch Biochem Biophys 464:176–186

    Article  CAS  PubMed  Google Scholar 

  23. Kumar S (2011) Engineering cytochrome P450 biocatalysts for biotechnology, medicine, and bioremediation. Expert Opin Drug Metab Toxicol 6:115–131

    Article  Google Scholar 

  24. Shoji O, Fujishiro T, Nakajima H, Kim M, Nagano S, Shiro Y, Watanabe Y (2007) Hydrogen peroxide dependent monooxygenations by tricking the substrate recognition of cytochrome P450BSβ. Angew Chem Int Ed 46:3656–3659

    Article  CAS  Google Scholar 

  25. Fujishiro T, Shoji O, Watanabe Y (2011) Non-covalent modification of the active site of cytochrome P450 for inverting the stereoselectivity of monooxygenation. Tetrahedron Lett 52:395–397

    Article  CAS  Google Scholar 

  26. Lee DS, Yamada A, Sugimoto H, Matsunaga I, Ogura H, Ichihara K, Adachi SI, Park SY, Shiro Y (2003) Substrate recognition and molecular mechanism of fatty acid hydroxylation by cytochrome P450 from Bacillus subtilis: crystallographic, spectroscopic, and mutational studies. J Biol Chem 278:9761–9767

    Article  CAS  PubMed  Google Scholar 

  27. Shoji O, Fujishiro T, Nagano S, Tanaka S, Hirose T, Shiro Y, Watanabe Y (2010) Understanding substrate misrecognition of hydrogen peroxide dependent cytochrome P450 from Bacillus subtilis. J Biol Inorg Chem 15:1331–1339

    Article  CAS  PubMed  Google Scholar 

  28. Shoji O, Wiese C, Fujishiro T, Shirataki C, Wünsch B, Watanabe Y (2010) Aromatic C-H bond hydroxylation by P450 peroxygenases: a facile colorimetric assay for monooxygenation activities of enzymes based on Russig’s blue formation. J Biol Inorg Chem 15:1109–1115

    Article  CAS  PubMed  Google Scholar 

  29. Zilly FE, Acevedo JP, Augustyniak W, Deege A, Häusig UW, Reetz MT (2011) Tuning a P450 enzyme for methane oxidation. Angew Chem 123:2772–2776

    Article  Google Scholar 

  30. Kawakami N, Shoji O, Watanabe Y (2011) Use of perfluorocarboxylic acids to trick cytochrome P450BM3 into initiating the hydroxylation of gaseous alkanes. Angew Chem Int Ed 50:5315–5318

    Article  CAS  Google Scholar 

  31. Ueng YF, Kuwabara T, Chun YJ, Guengerich FP (1997) Cooperativity in oxidations catalyzed by cytochrome P450 3A4. Biochemistry 36:370–381

    Article  CAS  PubMed  Google Scholar 

  32. Denisov IG, Baas BJ, Grinkova YV, Sligar SG (2007) Cooperativity in cytochrome P450 3A4: linkages in substrate binding, spin state, uncoupling, and product formation. J Biol Chem 282:7066–7076

    Article  CAS  PubMed  Google Scholar 

  33. Atkins WM (2005) Non-Michaelis-Menten kinetics in cytochrome P450-catalyzed reactions. Annu Rev Pharmacol Toxicol 45:291–310

    Article  CAS  PubMed  Google Scholar 

  34. Jung ST, Lauchli R, Arnold FH (2011) Cytochrome P450: taming a wild type enzyme. Curr Opin Biotechnol 22:809–817

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Lewis JC, Coelho PS, Arnold FH (2011) Enzymatic functionalization of carbon-hydrogen bonds. Chem Soc Rev 40:2003–2021

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Glieder A, Farinas ET, Arnold FH (2002) Laboratory evolution of a soluble, self-sufficient, highly active alkane hydroxylase. Nat Biotechnol 20:1135–1139

    Article  CAS  PubMed  Google Scholar 

  37. Lewis JC, Arnold FH (2009) Catalysts on demand: selective oxidations by laboratory-evolved cytochrome P450 BM3. CHIMIA Int J Chem 63:309–312

    Article  CAS  Google Scholar 

  38. Lewis JC, Bastian S, Bennett CS, Fu Y, Mitsuda Y, Chen MM, Greenberg WA, Wong C, Arnold FH (2009) Chemoenzymatic elaboration of monosaccharides using engineered cytochrome P450 BM3 demethylases. Proc Natl Acad Sci U S A 106:16550–16555

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Fasan R, Meharenna YT, Snow CD, Poulos TL, Arnold FH (2008) Evolutionary history of a specialized P450 propane monooxygenase. J Mol Biol 383:1069–1080

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Meinhold P, Peters MW, Hartwick A, Hernandez AR, Arnold FH (2006) Engineering cytochrome P450 BM3 for terminal alkane hydroxylation. Adv Syn Catal 348:763–772

    Article  CAS  Google Scholar 

  41. Lussenburg BMA, Babel LC, Vermeulen NPE, Commandeur JNM (2005) Evaluation of alkoxyresorufins as fluorescent substrates for cytochrome P450 BM3 and site-directed mutants. Anal Biochem 341:148–155

    Article  CAS  PubMed  Google Scholar 

  42. Van Vugt-Lussenburg BMA, Damsten MC, Maasdijk DM, Vermeulen NPE, Commandeur JNM (2006) Heterotropic and homotropic cooperativity by a drug-metabolising mutant of cytochrome P450 BM3. Biochem Biophys Res Commun 346:810–818

    Article  PubMed  Google Scholar 

  43. Li QS, Schwaneberg U, Fischer P, Schmid RD (2000) Directed evolution of the fatty-acid hydroxylase P450 BM-3 into an indole-hydroxylating catalyst. Chem Eur J 6:1531–1536

    Article  CAS  PubMed  Google Scholar 

  44. Whitehouse CJC, Bell SG, Yang W, Yorke JA, Blanford CF, Strong AJF, Morse EJ, Bartlam M, Rao Z, Wong LL (2009) A highly active single-mutation variant of P450BM3 (CYP102A1). ChemBioChem 10:1654–1656

    Article  CAS  PubMed  Google Scholar 

  45. Leroux F (2004) Atropisomerism, biphenyls, and fluorine: a comparison of rotational barriers and twist angles. ChemBioChem 5:644–649

    Article  CAS  PubMed  Google Scholar 

  46. Zilly FE, Acevedo JP, Augustyniak W, Deege A, Häusig UW, Reetz MT (2013) Corrigendum: tuning a P450 enzyme for methane oxidation. Angew Chem Int Ed 52:13503

    Article  CAS  Google Scholar 

  47. Shoji O, Kunimatsu T, Kawakami N, Watanabe Y (2013) Highly selective hydroxylation of benzene to phenol by wild-type cytochrome P450BM3 assisted by decoy molecules. Angew Chem Int Ed 52:1–5

    Article  Google Scholar 

  48. Pietz S, Wolker D, Haufe G (1997) Selectivity of the biooxygenation of N-phenylcarbamates by the fungus Beauveria bassiana. Tetrahedron 4020:17067–17078

    Article  Google Scholar 

  49. Dawsonz MJ, Lawrence GC, Mayalll J, Noble D, Roberts SM, Turner MK, Wall WF (1986) Microbial hydroxylation of cyclohexylcyclohexane: synthesis of an analogue of leukotriene-b3. Tetrahedron Lett 27:1089–1092

    Article  Google Scholar 

  50. Holland HL, Brown FM, Larsen BG, Zabic M (1995) Biotransformation of organic sulfides. Part 7 Formation of chiral isothiocyanato sulfoxides and related compounds by microbial biotransformation. Tetrahedron: Asym 6:1569–1574

    Article  CAS  Google Scholar 

  51. Sundby E, Azerad R, Anthonsen T (1998) 2,2-Dimethyl-1,3-propanediol as protective group promotes microbial hydroxylation of cis-bicyclo[3.3.0]octane-3,7-dione. Biotechnol Lett 20:337–340

    Article  CAS  Google Scholar 

  52. Vigne B, Archelas A, Fustoss R (1991) Microbial transformations 18. Regiosepecific para-hydroxylation of aromatic carbamates mediated by the fungus Beauveria sulfurescens. Tetrahedron 47:1447–1458

    Article  CAS  Google Scholar 

  53. Holland HL, Morris TA, Nava PJ, Zabic M (1999) A new paradigm for biohydroxylation by Beauveria bassiana ATCC7159. Tetrahedron 55:7441–7460

    Article  CAS  Google Scholar 

  54. Braunegg G, de Raadt A, Feichtenhofer S, Griengl H, Kopper I, Lehmann A, Weber H (1999) The concept of docking/protecting groups in biohydroxylation. Angew Chem Int Ed 38:2763–2766

    Article  CAS  Google Scholar 

  55. De Raadt A, Griengl H, Weber H (2001) The concept of docking and protecting groups in biohydroxylation. Chemistry 7:27–31

    Article  PubMed  Google Scholar 

  56. Li S, Chaulagain MR, Knauff AR, Podust LM, Montgomery J, Sherman DH (2009) Selective oxidation of carbolide C-H bonds by an engineered macrolide P450 mono-oxygenase. Proc Natl Acad Sci U S A 106:18463–18468

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. De Raadt A, Griengl H, Petsch M, Plachota P, Schoo N, Weber H, Braunegg G, Kopper I, Kreiner M, Zeiser A, Kieslich K (1996) Microbial hydroxylation of 2-cycloalkylbenzoxazoles. Part I. Product spectrum obtained from Cunninghamella blakesleeana DSM 1906 and Bacillus megaterium DSM 32. Tetrahedron: Asym 7:467–472

    Article  Google Scholar 

  58. De Raadt A, Griengl H, Petsch M, Plachota P, Schoo N, Weber H (1996) Microbial hydroxylation of 2-cycloalkylbenzoxazoles. Part II Determination of product structures and enhancement of enantiomeric excess. Tetrahedron: Asym 7:473–490

    Article  Google Scholar 

  59. De Raadt A, Griengl H, Petsch M, Plachota P, Schoo N, Weber H, Braunegg G, Kopper I, Kreiner M, Zeiser A (1996) Microbial hydroxylation of 2-cycloalkylbenzoxazoles. Part III Determination of product enantiomeric excess and cleavage of benzoxazoles. Tetrahedron: Asym 7:491–496

    Article  Google Scholar 

  60. Münzer DF, Meinhold P, Peters MW, Feichtenhofer S, Griengl H, Arnold FH, Glieder A, De Raadt A (2005) Stereoselective hydroxylation of an achiral cyclopentanecarboxylic acid derivative using engineered P450s BM-3. Chem Commun 28(20):2597–2599

    Google Scholar 

  61. Xue Y, Zhao L, Liu HW, Sherman DH (1998) A gene cluster for macrolide antibiotic biosynthesis in Streptomyces venezuelae: architecture of metabolic diversity. Proc Natl Acad Sci U S A 95:12111–12116

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Xue Y, Wilson D, Zhao L, Sherman DH (1998) Hydroxylation of macrolactones YC-17 and narbomycin is mediated by the pikC-encoded cytochrome P450 in Streptomyces venezuelae. Chem Biol 5:661–667

    Article  CAS  PubMed  Google Scholar 

  63. Li S, Podust LM, Sherman DH (2007) Engineering and analysis of a self-sufficient biosynthetic cytochrome P450 PikC fused to the RhFRED reductase domain. J Am Chem Soc 129:12940–12941

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Sherman DH, Li S, Yermalitskaya LV, Kim Y, Smith JA, Waterman MR, Podust LM (2006) The structural basis for substrate anchoring, active site selectivity, and product formation by P450 PikC from Streptomyces venezuelae. J Biol Chem 281:26289–26297

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Li S, Ouellet H, Sherman DH, Podust LM (2009) Analysis of transient and catalytic desosamine-binding pockets in cytochrome P-450 PikC from Streptomyces venezuelae. J Biol Chem 284:5723–5730

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Chefson A, Zhao J, Auclair K (2006) Replacement of natural cofactors by selected hydrogen peroxide donors or organic peroxides results in improved activity for CYP3A4 and CYP2D6. ChemBioChem 7:916–919

    Article  CAS  PubMed  Google Scholar 

  67. Podust LM, Sherman DH (2012) Diversity of P450 enzymes in the biosynthesis of natural products. Nat Prod Rep 29:1251–1266

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Larsen AT, May EM, Auclair K (2011) Predictable stereoselective and chemoselective hydroxylations and epoxidations with P450 3A4. J Am Chem Soc 133:7853–7858

    Article  CAS  PubMed  Google Scholar 

  69. Menard A, Fabra C, Huang Y, Auclair K (2012) Type II ligands as chemical auxiliaries to favor enzymatic transformations by P450 2E1. ChemBioChem 13:2527–2536

    Article  CAS  PubMed  Google Scholar 

  70. Redlich G, Zanger UM, Riedmaier S, Bache N, Giessing ABM, Eisenacher M, Stephan C, Meyer HE, Jensen ON, Marcus K (2008) Distinction between human cytochrome P450 (CYP) isoforms and identification of new phosphorylation sites by mass spectrometry. J Proteome Res 7:4678–4688

    Article  CAS  PubMed  Google Scholar 

  71. Shin HS, Slattery JT (1998) CYP3A4-mediated oxidation of lisofylline to lisofylline 4,5-diol in human liver microsomes. J Pharm Sci 87:390–393

    Article  CAS  PubMed  Google Scholar 

  72. Larsen AT, Lai T, Polic V, Auclair K (2012) Dual use of a chemical auxiliary: molecularly imprinted polymers for the selective recovery of products from biocatalytic reaction mixtures. Green Chem 14:2206–2211

    Article  CAS  Google Scholar 

  73. Cormack PAG, Elorza AZ (2004) Molecularly imprinted polymers: synthesis and characterisation. J Chromatog B 804:173–182

    Article  CAS  Google Scholar 

  74. He C, Long Y, Pan J, Li K, Liu F (2007) Application of molecularly imprinted polymers to solid-phase extraction of analytes from real samples. J Biochem Biophys Methods 70:133–150

    Article  CAS  PubMed  Google Scholar 

  75. Kist TBL, Mandaji M (2004) Separation of biomolecules using electrophoresis and nanostructures. Electrophoresis 25:3492–3497

    Article  CAS  PubMed  Google Scholar 

  76. Qiao F, Sun H, Yan H, Row KH (2006) Molecularly imprinted polymers for solid phase extraction. Chromatographia 64:625–634

    Article  CAS  Google Scholar 

  77. Turiel E, Martín-Esteban A (2010) Molecularly imprinted polymers for sample preparation: a review. Anal Chim Acta 668:87–99

    Article  CAS  PubMed  Google Scholar 

  78. Jin Y, Row KH (2007) Solid-phase extraction of caffeine and catechin compounds from green tea by caffeine molecular imprinted polymer. Bull Korean Chem Soc 28:276–280

    Article  CAS  Google Scholar 

  79. Theodoridis G, Manesiotis P (2002) Selective solid-phase extraction sorbent for caffeine made by molecular imprinting. J Chromatog A 948:163–169

    Article  CAS  Google Scholar 

  80. Tse Sum Bui B, Haupt K (2010) Molecularly imprinted polymers: synthetic receptors in bioanalysis. Anal Bioanal Chem 398:2481–2492

    Article  PubMed  Google Scholar 

  81. Cirillo G, Curcio M, Parisi OI, Puoci F, Iemma F, Spizzirri UG, Restuccia D, Picci N (2011) Molecularly imprinted polymers for the selective extraction of glycyrrhizic acid from liquorice roots. Food Chem 125:1058–1063

    Article  CAS  Google Scholar 

  82. Vasaitis TS, Bruno RD, Njar VCO (2011) CYP17 inhibitors for prostate cancer therapy. J Steroid Biochem Mol Biol 125:23–31

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Mercer EI (1991) Sterol biosynthesis inhibitors: their current status and modes of action. Lipids 26:584–597

    Article  CAS  PubMed  Google Scholar 

  84. Peng CC, Pearson JT, Rock DA, Joswig-Jones CA, Jones JP (2010) The effects of type II binding on metabolic stability and binding affinity in cytochrome P450 CYP3A4. Arch Biochem Biophys 497:68–81

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  85. Jones JP, Joswig-Jones CA, Hebner M, Chu Y, Koop DR (2011) The effects of nitrogen-heme-iron coordination on substrate affinities for cytochrome P450 2E1. Chem Biol Interact 193:50–56

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  86. Peng CC, Cape JL, Rushmore T, Crouch GJ, Jones JP (2008) Cytochrome P450 2C9 type II binding studies on quinoline-4-carboxamide analogues. J Med Chem 51:8000–8011

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Pearson JT, Hill JJ, Swank J, Isoherranen N, Kunze KL, Atkins WM (2006) Surface plasmon resonance analysis of antifungal azoles binding to CYP3A4 with kinetic resolution of multiple binding orientations. Biochemistry 45:6341–6353

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. Dahal UP, Joswig-Jones C, Jones JP (2012) Comparative study of the affinity and metabolism of type I and type II binding quinoline carboxamide analogues by cytochrome P450 3A4. J Med Chem 55:280–290

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  89. Pearson J, Dahal UP, Rock D, Peng CC, Schenk JO, Joswig-Jones C, Jones JP (2011) The kinetic mechanism for cytochrome P450 metabolism of type II binding compounds: evidence supporting direct reduction. Arch Biochem Biophys 511:69–79

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. Chiba M (2001) P450 interaction with HIV protease inhibitors: relationship between metabolic stability, inhibitory potency, and P450 binding spectra, Drug Metab. Drug Metab Dispos 29:1–3

    Article  CAS  PubMed  Google Scholar 

  91. Hutzler JM, Melton RJ, Rumsey JM, Schnute ME, Locuson CW, Wienkers LC (2006) Inhibition of cytochrome P450 3A4 by a pyrimidineimidazole: evidence for complex heme interactions. Chem Res Toxicol 19:1650–1659

    Article  CAS  PubMed  Google Scholar 

  92. Krishnan S, Wasalathanthri D, Zhao L, Schenkman JB, Rusling JF (2011) Efficient bioelectronic actuation of the natural catalytic pathway of human metabolic cytochrome P450s. J Am Chem Soc 133:1459–1465

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  93. Adas F, Salaün JP, Berthou F, Picart D, Simon B, Amet Y (1999) Requirement for ω and (ω-1)-hydroxylations of fatty acids by human cytochromes P450 2E1 and 4A11. J Lipid Res 40:1990–1997

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Writing of this chapter and research in the area of P450 enzymes in the Auclair group have been funded by the National Science and Engineering Research Council of Canada (NSERC), the Center in Green Chemistry and Catalysis, Merck Frosst Canada Ltée, Boehringer Ingelheim Canada and AstraZeneca Canada. V.P. was supported by scholarships from the Dr. Richard H. Tomlinson Foundation, Walter C. Sumner Foundation and the Centre in Green Chemistry and Catalysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karine Auclair .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Auclair, K., Polic, V. (2015). Use of Chemical Auxiliaries to Control P450 Enzymes for Predictable Oxidations at Unactivated C-H Bonds of Substrates. In: Hrycay, E., Bandiera, S. (eds) Monooxygenase, Peroxidase and Peroxygenase Properties and Mechanisms of Cytochrome P450. Advances in Experimental Medicine and Biology, vol 851. Springer, Cham. https://doi.org/10.1007/978-3-319-16009-2_8

Download citation

Publish with us

Policies and ethics