Biological Diversity of Cytochrome P450 Redox Partner Systems

  • Kirsty J. McLean
  • Dominika Luciakova
  • James Belcher
  • Kang Lan Tee
  • Andrew W. MunroEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 851)


Cytochrome P450 enzymes (P450s or CYPs) catalyze an enormous variety of oxidative reactions in organisms from all major domains of life. Their monooxygenase activity relies on the reductive scission of molecular oxygen (O2) bound to P450 heme iron, and thus on the delivery of two electrons to the heme iron at discrete points in the catalytic cycle. Early studies suggested that P450 redox partner machinery fell into only two major classes: either the eukaryotic diflavin enzyme NADPH-cytochrome P450 oxidoreductase, or bacterial/mitochondrial NAD(P)H-ferredoxin reductase and ferredoxin partners. However, more recent studies, aided by genome sequence data, reveal a much more complex scenario. Several new types of P450 redox partner systems have now been characterized, including P450s naturally linked to their redox partners, or to a component protein of their P450 electron delivery system. Other P450s have evolved to bypass requirements for redox partners, and instead react directly with hydrogen peroxide or NAD(P)H to facilitate oxidative or reductive catalysis. Further P450s are fused to non-redox partner enzymes and can catalyse consecutive reactions in a common pathway. This chapter describes the biochemistry and the enormous natural diversity of P450 redox systems, including descriptions of novel P450s fused to non-redox partner proteins.


Cytochrome P450 Compound I P450 redox systems P450 oxidoreductase P450 BM3 P450-flavodoxin fusion protein P450-ferredoxin fusion protein 


  1. 1.
    Guengerich FP, Munro AW (2013) Unusual cytochrome P450 enzymes and reactions. J Biol Chem 288:17065–17073PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Rittle J, Green MT (2010) Cytochrome P450 compound I: capture, characterization, and C-H bond activation kinetics. Science 330:933–937PubMedCrossRefGoogle Scholar
  3. 3.
    Groves JT (2006) High-valent iron in chemical and biological oxidations. J Inorg Biochem 100:434–437PubMedCrossRefGoogle Scholar
  4. 4.
    Pandey AV, Flück CE (2013) NADPH P450 oxidoreductase: structure, function, and pathology of diseases. Pharmacol Ther 138:229–254PubMedCrossRefGoogle Scholar
  5. 5.
    Monk BC, Tomasiak TM, Keniya MV, Huschmann FU, Tyndall JD, O’Connell JD III, Cannon RD, McDonald JG, Rodriguez A, Finer-Moore JS, Stroud RM (2014) Architecture of a single membrane spanning cytochrome P450 suggests constraints that orient the catalytic domain relative to the bilayer. Proc Natl Acad Sci U S A 111:3865–3870PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Porter TD (1991) An unusual yet strongly conserved flavoprotein reductase in bacteria and mammals. Trends Biochem Sci 16:154–158PubMedCrossRefGoogle Scholar
  7. 7.
    Wang M, Roberts DL, Paschke R, Shea TM, Masters BS, Kim JJ (1997) Three-dimensional structure of NADPH-cytochrome P450 reductase: prototype for FMN- and FAD-containing enzymes. Proc Natl Acad Sci U S A 94:8411–8416PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Gutierrez A, Doehr O, Paine M, Wolf CR, Scrutton NS, Roberts GC (2000) Trp-676 facilitates nicotinamide coenzyme exchange in the reductive half-reaction of human cytochrome P450 reductase: properties of the soluble W676H and W676A mutant reductases. Biochemistry 39:15990–15999PubMedCrossRefGoogle Scholar
  9. 9.
    Gutierrez A, Munro AW, Grunau A, Wolf CR, Scrutton NS, Roberts GC (2003) Interflavin electron transfer in human cytochrome P450 reductase is enhanced by coenzyme binding. Relaxation kinetic studies with coenzyme analogues. Eur J Biochem 270:2612–2621PubMedCrossRefGoogle Scholar
  10. 10.
    Iyanagi T, Xia C, Kim JJ (2012) NADPH-cytochrome P450 oxidoreductase: prototypic member of the diflavin reductase family. Arch Biochem Biophys 528:72–89PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Poulos TL, Finzel BC, Howard AJ (1987) High-resolution crystal structure of cytochrome P450cam. J Mol Biol 195:687–700PubMedCrossRefGoogle Scholar
  12. 12.
    Rheinwald JG, Chakrabarty AM, Gunsalus IC (1973) A transmissible plasmid controlling camphor oxidation in Pseudomonas putida. Proc Natl Acad Sci U S A 70:885–889PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Sevrioukova IF, Garcia C, Li H, Bhaskar B, Poulos TL (2003) Crystal structure of putidaredoxin, the [2Fe-2S] component of the P450cam monooxygenase system from Pseudomonas putida. J Mol Biol 333:377–392PubMedCrossRefGoogle Scholar
  14. 14.
    Sevrioukova IF, Poulos TL, Churbanova IY (2010) Crystal structure of the putidaredoxin reductase•putidaredoxin electron transfer complex. J Biol Chem 285:13616–13620PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Churbanova IY, Poulos TL, Sevrioukova IF (2010) Production and characterization of a functional putidaredoxin reductase-putidaredoxin covalent complex. Biochemistry 49:58–67PubMedCrossRefGoogle Scholar
  16. 16.
    Peterson JA, Lu JY, Geisselsoder J, Graham-Lorence S, Carmona C, Witney F, Lorence MC (1992) Cytochrome P-450terp. Isolation and purification of the protein and cloning and sequencing of its operon. J Biol Chem 267:14193–14203PubMedGoogle Scholar
  17. 17.
    Bellamine A, Mangla AT, Nes WD, Waterman MR (1999) Characterization and catalytic properties of the sterol 14α-demethylase from Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 96:8937–8942PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    McLean KJ, Warman AJ, Seward HE, Marshall KR, Girvan HM, Cheesman MR, Waterman MR, Munro AW (2006) Biophysical characterization of the sterol demethylase P450 from Mycobacterium tuberculosis, its cognate ferredoxin, and their interactions. Biochemistry 45:8427–8443PubMedCrossRefGoogle Scholar
  19. 19.
    Tripathi S, Li H, Poulos TL (2013) Structural basis for effector control and redox partner recognition in cytochrome P450. Science 340:1227–1230PubMedCrossRefGoogle Scholar
  20. 20.
    Green AJ, Munro AW, Cheesman MR, Reid GA, von Wachenfeldt C, Chapman SK (2003) Expression, purification and characterisation of a Bacillus subtilis ferredoxin: a potential electron transfer donor to cytochrome P450 BioI. J Inorg Biochem 93:92–99PubMedCrossRefGoogle Scholar
  21. 21.
    Puchkaev AV, Ortiz de Montellano PR (2005) The Sulfolobus solfataricus electron donor partners of thermophilic CYP119: an unusual non-NAD(P)H-dependent cytochrome P450 system. Arch Biochem Biophys 434:169–177PubMedCrossRefGoogle Scholar
  22. 22.
    Ricagno S, de Rosa M, Aliverti A, Zanetti G, Bolognesi M (2007) The crystal structure of FdxA, a 7Fe ferredoxin from Mycobacterium smegmatis. Biochem Biophys Res Commun 360:97–102PubMedCrossRefGoogle Scholar
  23. 23.
    McLean KJ, Munro AW (2008) Structural biology and biochemistry of cytochrome P450 systems in Mycobacterium tuberculosis. Drug Metab Rev 40:427–446PubMedCrossRefGoogle Scholar
  24. 24.
    Ewen KM, Kleser M, Bernhardt R (2011) Adrenodoxin: the archetype of vertebrate-type [2Fe-2S] cluster ferredoxins. Biochim Biophys Acta 1814:111–125PubMedCrossRefGoogle Scholar
  25. 25.
    Müller JJ, Lapko A, Bourenkov G, Ruckpaul K, Heinemann U (2001) Adrenodoxin reductase-complex structure suggests electron transfer path in steroid biosynthesis. J Biol Chem 276:2786–2789PubMedCrossRefGoogle Scholar
  26. 26.
    Hawkes DB, Slessor KE, Bernhardt PV, De Voss JJ (2010) Cloning, expression and purification of cindoxin, an unusual FMN-containing cytochrome P450 redox partner. ChemBioChem 11:1107–1114PubMedCrossRefGoogle Scholar
  27. 27.
    Narhi LO, Fulco AJ (1986) Characterization of a catalytically self-sufficient 119,000-dalton cytochrome P450 monooxygenase induced by barbiturates in Bacillus megaterium. J Biol Chem 261:7160–7169PubMedGoogle Scholar
  28. 28.
    Narhi LO, Fulco AJ (1987) Identification and characterization of two functional domains in cytochrome P-450 BM-3, a catalytically self-sufficient monooxygenase induced by barbiturates in Bacillus megaterium. J Biol Chem 262:6683–6690PubMedGoogle Scholar
  29. 29.
    Noble MA, Miles CS, Chapman SK, Lysek DA, Mackay AC, Reid GA, Hanzlik RP, Munro AW (1999) Roles of key active-site residues in flavocytochrome P450 BM3. Biochem J 339:371–379PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Munro AW, Daff S, Coggins JR, Lindsay JG, Chapman SK (1996) Probing electron transfer in flavocytochrome P-450 BM3 and its component domains. Eur J Biochem 239:403–409PubMedCrossRefGoogle Scholar
  31. 31.
    Black SD, Martin ST (1994) Evidence for conformational dynamics and molecular aggregation in cytochrome P450 102 (BM-3). Biochemistry 33:12056–12062PubMedCrossRefGoogle Scholar
  32. 32.
    Neeli R, Girvan HM, Lawrence A, Warren MJ, Leys D, Scrutton NS, Munro AW (2005) The dimeric form of flavocytochrome P450 BM3 is catalytically functional as a fatty acid hydroxylase. FEBS Lett 579:5582–5588PubMedCrossRefGoogle Scholar
  33. 33.
    Kitazume T, Haines DC, Estabrook RW, Chen B, Peterson JA (2007) Obligatory intermolecular electron-transfer from FAD to FMN in dimeric P450BM-3. Biochemistry 46:11892–11901PubMedCrossRefGoogle Scholar
  34. 34.
    Girvan HM, Dunford AJ, Neeli R, Ekanem IS, Waltham TN, Joyce MG, Leys D, Curtis RA, Williams P, Fisher K, Voice MW, Munro AW (2011) Flavocytochrome P450 BM3 mutant W1046A is a NADH-dependent fatty acid hydroxylase: implications for the mechanism of electron transfer in the P450 BM3 dimer. Arch Biochem Biophys 507:75–85PubMedCrossRefGoogle Scholar
  35. 35.
    Siddhanta U, Presta A, Fan B, Wolan D, Rouseau DL, Stuehr DJ (1998) Domain swapping in inducible nitric-oxide synthase. Electron transfer occurs between flavin and heme groups located on adjacent subunits in the dimer. J Biol Chem 273:18950–18958PubMedCrossRefGoogle Scholar
  36. 36.
    Daff SN, Chapman SK, Turner KL, Holt RA, Govindaraj S, Poulos TL, Munro AW (1997) Redox control of the catalytic cycle of flavocytochrome P-450 BM3. Biochemistry 36:13816–13823PubMedCrossRefGoogle Scholar
  37. 37.
    Murataliev MB, Klein M, Fulco AJ, Feyereisen R (1997) Functional interactions in cytochrome P450 BM3: flavin semiquinone intermediates, role of NADP(H), and mechanism of electron transfer by the flavoprotein domain. Biochemistry 36:8401–8412PubMedCrossRefGoogle Scholar
  38. 38.
    Hanley SC, Ost TW, Daff S (2004) The unusual redox properties of flavocytochrome P450 BM3 flavodoxin domain. Biochem Biophys Res Commun 325:1418–1423PubMedCrossRefGoogle Scholar
  39. 39.
    Gustafsson MC, Roitel O, Marshall KR, Noble MA, Chapman SK, Pessegueiro A, Fulco AJ, Cheesman MR, von Wachenfeldt C, Munro AW (2004) Expression, purification, and characterization of Bacillus subtilis cytochromes P450 CYP102A2 and CYP102A3: flavocytochrome homologues of P450 BM3 from Bacillus megaterium. Biochemistry 43:5474–5487PubMedCrossRefGoogle Scholar
  40. 40.
    Chowdhary PK, Alemseghed M, Haines DC (2007) Cloning, expression and characterization of a fast self-sufficient P450: CYP102A5 from Bacillus cereus. Arch Biochem Biophys 468:32–43PubMedCrossRefGoogle Scholar
  41. 41.
    Nakayama N, Takemae A, Shoun H (1996) Cytochrome P450foxy, a catalytically self-sufficient fatty acid hydroxylase of the fungus Fusarium oxysporum. J Biochem 119:435–440PubMedCrossRefGoogle Scholar
  42. 42.
    Kitazume T, Tanaka A, Takaya N, Nakamura A, Matsuyama S, Suzuki T, Shoun H (2002) Kinetic analysis of hydroxylation of saturated fatty acids by recombinant P450foxy produced by an Escherichia coli expression system. Eur J Biochem 269:2075–2082PubMedCrossRefGoogle Scholar
  43. 43.
    Correll CC, Batie CJ, Ballou DP, Ludwig ML (1992) Phthalate dioxygenase reductase: a modular structure for electron transfer from pyridine nucleotides to [2Fe-2S]. Science 258:1604–1610PubMedCrossRefGoogle Scholar
  44. 44.
    De Mot R, Parrey AHA (2002) A novel class of self-sufficient cytochrome P450 monooxygenases in prokaryotes. Trends Microbiol 10:502–508PubMedCrossRefGoogle Scholar
  45. 45.
    Warman AJ, Robinson JW, Luciakova D, Lawrence AD, Marshall KR, Warren MJ, Cheesman MR, Rigby SE, Munro AW, McLean KJ (2012) Characterization of Cupriavidus metallidurans CYP116B1 – a thiocarbamate herbicide oxygenating P450-phthalate dioxygenase reductase fusion protein. FEBS J 279:1675–1693PubMedCrossRefGoogle Scholar
  46. 46.
    Hunter DJ, Roberts GA, Ost TW, White JH, Muller S, Turner NJ, Flitsch SL, Chapman SK (2005) Analysis of the domain properties of the novel cytochrome P450 RhF. FEBS Lett 579:2215–2220PubMedCrossRefGoogle Scholar
  47. 47.
    Nagy I, Compernolle F, Ghys K, Vanderleyden J, De Mot R (1995) A single cytochrome-P-450 system is involved in degradation of the herbicides EPTC (S-ethyl dipropylthiocarbamate) and atrazine by Rhodococcus sp. strain ni86/21. Appl Environ Microbiol 61:2056–2060PubMedCentralPubMedGoogle Scholar
  48. 48.
    Nagy I, Schoofs G, Compernolle F, Proost P, Vanderleyden J, De Mot R (1995) Degradation of the thiocarbamate herbicide EPTC (S-ethyl dipropylcarbamothioate) and biosafening by Rhodococcus sp. strain ni86/21 involves an inducible cytochrome P-450 system and aldehyde dehydrogenase. J Bacteriol 177:676–687PubMedCentralPubMedGoogle Scholar
  49. 49.
    Celik A, Roberts GA, White JH, Chapman SK, Turner NJ, Flitsch SL (2006) Probing the substrate specificity of the catalytically self-sufficient cytochrome P450RhF from a Rhodococcus sp. Chem Commun 2006:4492–4494Google Scholar
  50. 50.
    Liu L, Schmid RD, Urlacher VB (2006) Cloning, expression, and characterization of a self-sufficient cytochrome P450 monooxygenase from Rhodococcus ruber DSM 44319. Appl Microbiol Biotechnol 72:876–882PubMedCrossRefGoogle Scholar
  51. 51.
    Liu L, Schmid RD, Urlacher VB (2010) Engineering cytochrome P450 monooxygenase CYP116B3 for high dealkylation activity. Biotechnol Lett 32:841–845PubMedCrossRefGoogle Scholar
  52. 52.
    Coelho PS, Wang ZJ, Ener ME, Baril SA, Kannan A, Arnold FH, Brustad EM (2013) A serine-substituted P450 catalyzes highly efficient carbene transfer to olefins in vivo. Nat Chem Biol 9:485–487PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Butler CF, Peet C, Mason AE, Voice MW, Leys D, Munro AW (2013) Key mutations alter the cytochrome P450 BM3 conformational landscape and remove inherent substrate bias. J Biol Chem 288:25387–25399PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Sabbadin F, Grogan G, Bruce NC (2013) LICRED: a versatile drop-in vector for rapid generation of redox-self-sufficient cytochromes P450. Methods Mol Biol 987:239–249PubMedGoogle Scholar
  55. 55.
    Seth-Smith HM, Rosser SJ, Basran A, Travis ER, Dabbs ER, Nicklin S, Bruce NC (2002) Cloning, sequencing, and characterization of the hexahydro-1,3,5-trinitro-1,3,5-triazine degradation gene cluster from Rhodococcus rhodochrous. Appl Environ Microbiol 68:4764–4771PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    Jackson RG, Rylott EL, Fournier D, Hawari J, Bruce NC (2007) Exploring the biochemical properties and remediation applications of the unusual explosive-degrading P450 system XplA/B. Proc Natl Acad Sci U S A 104:16822–16827PubMedCentralPubMedCrossRefGoogle Scholar
  57. 57.
    Rylott EL, Jackson RG, Sabbadin F, Seth-Smith HM, Edwards J, Chong CS, Strand SE, Grogan G, Bruce NC (2011) The explosive-degrading cytochrome P450 XplA: biochemistry, structural features and prospects for bioremediation. Biochim Biophys Acta 1814:230–236PubMedCrossRefGoogle Scholar
  58. 58.
    Sabbadin F, Jackson R, Haider K, Tampi G, Turkenburg JP, Hart S, Bruce NC, Grogan G (2009) The 1.5-Å structure of XplA-heme, an unusual cytochrome P450 heme domain that catalyzes reductive biotransformation of royal demolition explosive. J Biol Chem 284:28467–28475PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Raag R, Martinis SA, Sligar SG, Poulos TL (1991) Crystal structure of the cytochrome P-450CAM active site mutant Thr252Ala. Biochemistry 30:11420–11429PubMedCrossRefGoogle Scholar
  60. 60.
    Bui SH, McLean KJ, Cheesman MR, Bradley JM, Rigby SE, Levy CW, Leys D, Munro AW (2012) Unusual spectroscopic and ligand binding properties of the cytochrome P450-flavodoxin fusion enzyme XplA. J Biol Chem 287:19699–19714PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    McCarthy AA, Walsh MA, Verma CS, O’Connell DP, Reinhold M, Yalloway GN, D’Arcy D, Higgins TM, Voordouw G, Mayhew SG (2002) Crystallographic investigation of the role of aspartate 95 in the modulation of the redox potentials of Desulfovibrio vulgaris. Biochemistry 41:10950–10962PubMedCrossRefGoogle Scholar
  62. 62.
    Seth-Smith HM, Edwards J, Rosser SJ, Rathbone DA, Bruce NC (2008) The explosive-degrading cytochrome P450 system is highly conserved among strains of Rhodococcus spp. Appl Environ Microbiol 74:4550–4552PubMedCentralPubMedCrossRefGoogle Scholar
  63. 63.
    Jackson CJ, Lamb DC, Marczylo TH, Warrilow AG, Manning NJ, Lowe DJ, Kelly DE, Kelly SL (2002) A novel sterol 14α-demethylase/ferredoxin fusion protein from Methylococcus capsulatus represents a new class of the cytochrome P450 superfamily. J Biol Chem 277:46959–46965PubMedCrossRefGoogle Scholar
  64. 64.
    Geer LY, Domrachev M, Lipman DJ, Bryant SH (2002) CDART: protein homology by domain architecture. Genome Res 12:1619–1623PubMedCentralPubMedCrossRefGoogle Scholar
  65. 65.
    Tsitsigiannis DI, Kowieski TM, Zarnowski R, Keller NP (2005) Three putative oxylipin biosynthetic genes integrate sexual and asexual development in Aspergillus nidulans. Microbiology 151:1809–1821PubMedCrossRefGoogle Scholar
  66. 66.
    Tsitsigiannis DI, Keller NP (2006) Oxylipins act as determinants of natural product biosynthesis and seed colonization in Aspergillus nidulans. Mol Microbiol 59:882–892PubMedCrossRefGoogle Scholar
  67. 67.
    Brodhun F, Gobel C, Hornung E, Feussner I (2009) Identification of PpoA from Aspergillus nidulans as a fusion protein of a fatty acid heme dioxygenase/peroxidase and a cytochrome P450. J Biol Chem 284:11792–11805PubMedCentralPubMedCrossRefGoogle Scholar
  68. 68.
    Brodhun F, Schneider S, Gobel C, Hornung E, Feussner I (2010) PpoC from Aspergillus nidulans is a fusion protein with only one active haem. Biochem J 425:553–565PubMedCrossRefGoogle Scholar
  69. 69.
    Hansen BG, Mnich E, Nielsen KF, Nielsen JB, Nielsen MT, Mortensen UH, Larsen TO, Patil KR (2012) Involvement of a natural fusion of a cytochrome P450 and a hydrolase in mycophenolic acid biosynthesis. Appl Environ Microbiol 78:4908–4913PubMedCentralPubMedCrossRefGoogle Scholar
  70. 70.
    Lee DS, Yamada A, Sugimoto H, Matsunaga I, Ogura H, Ichihara K, Adachi S, Park SY, Shiro Y (2003) Substrate recognition and molecular mechanism of fatty acid hydroxylation by cytochrome P450 from Bacillus subtilis − crystallographic, spectroscopic, and mutational studies. J Biol Chem 278:9761–9767PubMedCrossRefGoogle Scholar
  71. 71.
    Fujishiro T, Shoji O, Nagano S, Sugimoto H, Shiro Y, Watanabe Y (2011) Crystal structure of H2O2-dependent cytochrome P450SPα with its bound fatty acid substrate: insight into the regioselective hydroxylation of fatty acids at the α position. J Biol Chem 286:29941–29950PubMedCentralPubMedCrossRefGoogle Scholar
  72. 72.
    Matsunaga I, Sumimoto T, Ueda A, Kusunose E, Ichihara K (2000) Fatty acid-specific, regiospecific, and stereospecific hydroxylation by cytochrome P450 (CYP152B1) from Sphingomonas paucimobilis: substrate structure required for α-hydroxylation. Lipids 35:365–371PubMedCrossRefGoogle Scholar
  73. 73.
    Matsunaga I, Yokotani N, Gotoh O, Kusunose E, Yamada M, Ichihara K (1997) Molecular cloning and expression of fatty acid α-hydroxylase from Sphingomonas paucimobilis. J Biol Chem 272:23592–23596PubMedCrossRefGoogle Scholar
  74. 74.
    Matsunaga I, Ueda A, Fujiwara N, Sumimoto T, Ichihara K (1999) Characterization of the ybdT gene product of Bacillus subtilis: novel fatty acid β-hydroxylating cytochrome P450. Lipids 34:841–846PubMedCrossRefGoogle Scholar
  75. 75.
    Rude MA, Baron TS, Brubaker S, Alibhai M, Del Cardayre SB, Schirmer A (2011) Terminal olefin (1-alkene) biosynthesis by a novel P450 fatty acid decarboxylase from Jeotgalicoccus species. Appl Environ Microbiol 77:1718–1727PubMedCentralPubMedCrossRefGoogle Scholar
  76. 76.
    Belcher J, McLean KJ, Matthews S, Woodward LS, Fisher K, Rigby SE, Nelson DR, Potts D, Baynham MT, Parker DA, Leys D, Munro AW (2014) Structure and biochemical properties of the alkene producing cytochrome P450 OleT JE (CYP152L1) from the Jeotgalicoccus sp. 8456 bacterium. J Biol Chem 289:6535–6550PubMedCentralPubMedCrossRefGoogle Scholar
  77. 77.
    Girhard M, Schuster S, Dietrich M, Dürre P, Urlacher VB (2007) Cytochrome P450 monooxygenase from Clostridium acetobutylicum: a new α-fatty acid hydroxylase. Biochem Biophys Res Commun 362:114–119PubMedCrossRefGoogle Scholar
  78. 78.
    Liu Y, Wang C, Yan J, Zhang W, Guan W, Lu X, Li S (2014) Hydrogen peroxide-independent production of α-alkenes by OleT JE P450 fatty acid decarboxylase. Biotechnol Biofuels 7:28PubMedCentralPubMedCrossRefGoogle Scholar
  79. 79.
    Daiber A, Shoun H, Ullrich V (2005) Nitric oxide reductase (P450nor) from Fusarium oxysporum. J Inorg Biochem 99:185–193PubMedCrossRefGoogle Scholar
  80. 80.
    Shoun H, Tanimoto T (1991) Denitrification by the fungus Fusarium oxysporum and involvement of cytochrome P-450 in the respiratory nitrite reduction. J Biol Chem 266:11078–11082PubMedGoogle Scholar
  81. 81.
    Usuda K, Toritsuka N, Matsuo Y, Kim DH, Shoun H (1995) Denitrification by the fungus Cylindrocarpon tonkinense: anaerobic cell growth and two isozyme forms of cytochrome P-450nor. Appl Environ Microbiol 61:883–889PubMedCentralPubMedGoogle Scholar
  82. 82.
    Shoun H, Fushinobu S, Jiang L, Kim SW, Wakagi T (2012) Fungal denitrification and nitric oxide reductase cytochrome P450nor. Phil Trans R Soc B Biol Sci 367:1186–1194CrossRefGoogle Scholar
  83. 83.
    Shiro Y, Fujii M, Iizuka T, Adachi S, Tsukamoto K, Nakahara K, Shoun H (1995) Spectroscopic and kinetic-studies on reaction of cytochrome P450nor with nitric oxide − implication for its nitric oxide reduction mechanism. J Biol Chem 270:1617–1623PubMedCrossRefGoogle Scholar
  84. 84.
    Lehnert N, Praneeth VKK, Paulat F (2006) Electronic structure of iron(II)-porphyrin nitroxyl complexes: molecular mechanism of fungal nitric oxide reductase (P450nor). J Comput Chem 27:1338–1351PubMedCrossRefGoogle Scholar
  85. 85.
    Kostanjevecki V, Leys D, Van Driessche G, Meyer TE, Cusanovich MA, Fischer U, Guisez Y, Van Beeumen J (1999) Structure and characterization of Ectothiorhodospira vacuolata cytochrome b 558, a prokaryotic homologue of cytochrome b 5. J Biol Chem 274:35614–35620PubMedCrossRefGoogle Scholar
  86. 86.
    Altuve A, Silchenko S, Lee KH, Kuczera K, Terzyan S, Zhang X, Benson DR, Rivera M (2001) Probing the differences between rat liver outer mitochondrial membrane cytochrome b 5 and microsomal cytochromes b 5. Biochemistry 40:9469–9483PubMedCrossRefGoogle Scholar
  87. 87.
    Spatz L, Strittmatter P (1973) A form of reduced nicotinamide adenine dinucleotide cytochrome b 5 reductase containing both the catalytic site and an additional hydrophobic membrane-binding segment. J Biol Chem 248:793–799PubMedGoogle Scholar
  88. 88.
    Guzov VM, Houston HL, Murataliev MB, Walker FA, Feyereisen R (1996) Molecular cloning, overexpression in Escherichia coli, structural and functional characterization of house fly cytochrome b 5. J Biol Chem 271:26637–26645PubMedCrossRefGoogle Scholar
  89. 89.
    Funk WD, Lo TP, Mauk MR, Brayer GD, MacGillivray RT, Mauk AG (1990) Mutagenic, electrochemical, and crystallographic investigation of the cytochrome b 5 oxidation-reduction equilibrium: involvement of asparagine-57, serine-64, and heme propionate-7. Biochemistry 29:5500–5508PubMedCrossRefGoogle Scholar
  90. 90.
    Hildebrandt A, Estabrook RW (1971) Evidence for the participation of cytochrome b 5 in hepatic microsomal mixed-function oxidation reactions. Arch Biochem Biophys 143:66–79PubMedCrossRefGoogle Scholar
  91. 91.
    Correia MA, Mannering GJ (1973) Reduced diphosphopyridine nucleotide synergism of the reduced triphosphopyridine nucleotide-dependent mixed-function oxidase system of hepatic microsomes. II. Role of the type I drug-binding site of cytochrome P-450. Mol Pharmacol 9:470–485PubMedGoogle Scholar
  92. 92.
    Sang-Choul I, Waskell L (2011) The interaction of microsomal cytochrome P450 2B4 with its redox partners, cytochrome P450 reductase and cytochrome b 5. Arch Biochem Biophys 507:144–153CrossRefGoogle Scholar
  93. 93.
    Katagiri M, Kagawa N, Waterman MR (1995) The role of cytochrome b 5 in the biosynthesis of androgens by human P450C17. Arch Biochem Biophys 317:343–347PubMedCrossRefGoogle Scholar
  94. 94.
    Akhtar M, Wright JN, Lee-Robichaud P (2011) A review of mechanistic studies on aromatase (CYP19) and 17α-hydroxylase-17,20-lyase (CYP17). J Steroid Biochem Mol Biol 125:2–12PubMedCrossRefGoogle Scholar
  95. 95.
    Storbeck KH, Swart AC, Goosen P, Swart P (2013) Cytochrome b 5: novel roles in steroidogenesis. Mol Cell Endocrinol 371:87–99PubMedCrossRefGoogle Scholar
  96. 96.
    Finn RD, McLaughlin LA, Ronseaux S, Rosewell I, Houston JB, Henderson CJ, Wolf CR (2008) Defining the in vivo role for cytochrome b 5 in cytochrome P450 function through the conditional hepatic deletion of microsomal cytochrome b 5. J Biol Chem 283:31385–31393PubMedCentralPubMedCrossRefGoogle Scholar
  97. 97.
    McLaughlin LA, Ronseaux S, Finn RD, Henderson CJ, Wolf CR (2010) Deletion of microsomal cytochrome b 5 profoundly affects hepatic and extrahepatic drug metabolism. Mol Pharmacol 78:269–278PubMedCrossRefGoogle Scholar
  98. 98.
    Ichinose H, Wariishi H (2012) Heterologous expression and mechanistic investigation of a fungal cytochrome P450 (CYP5150A2): involvement of alternative redox partners. Arch Biochem Biophys 518:8–15PubMedCrossRefGoogle Scholar
  99. 99.
    Syed K, Kattamuri C, Thompson TB, Yadav JS (2011) Cytochrome b 5 reductase-cytochrome b 5 as an active P450 redox enzyme system in Phanerochaete chrysosporium: atypical properties and in vivo evidence of electron transfer capability to CYP63A2. Arch Biochem Biophys 509:26–32PubMedCentralPubMedCrossRefGoogle Scholar
  100. 100.
    Henderson CJ, McLaughlin LA, Wolf CR (2013) Evidence that cytochrome b 5 and cytochrome b 5 reductase can act as sole electron donor to the hepatic cytochrome P450 system. Mol Pharmacol 83:1209–1217PubMedCrossRefGoogle Scholar
  101. 101.
    Noble MA, Girvan HM, Smith SJ, Smith WE, Murataliev M, Guzov VM, Feyereisen R, Munro AW (2007) Analysis of the interactions of cytochrome b 5 with flavocytochrome P450 BM3 and its domains. Drug Metab Rev 39:599–617PubMedCrossRefGoogle Scholar
  102. 102.
    Nelson DR, Goldstone JV, Stegeman JJ (2013) The cytochrome P450 genesis locus: the origin and evolution of animal cytochrome P450s. Philos Trans R Soc Lond B Biol Sci 368(1612):20120474PubMedCentralPubMedCrossRefGoogle Scholar
  103. 103.
    Munro AW, Girvan HM, McLean KJ (2007) Variations on a (t)heme − novel mechanisms, redox partners and catalytic functions in the cytochrome P450 superfamily. Nat Prod Rep 24:585–609PubMedCrossRefGoogle Scholar
  104. 104.
    Sadeghi SJ, Gilardi G (2013) Chimeric P450 enzymes: activity of artificial redox fusions driven by different reductases for biotechnological applications. Biotechnol Appl Biochem 60:102–110PubMedCrossRefGoogle Scholar
  105. 105.
    Munro AW, Girvan HM, McLean KJ (2007) Cytochrome P450 – redox partner fusion enzymes. Biochim Biophys Acta 1770:345–359PubMedCrossRefGoogle Scholar
  106. 106.
    Hamdane D, Xia C, Im SC, Zhang H, Kim JJ, Waskell L (2009) Structure and function of an NADPH-cytochrome P450 oxidoreductase in an open conformation capable of reducing cytochrome P450. J Biol Chem 284:11374–11378PubMedCentralPubMedCrossRefGoogle Scholar
  107. 107.
    Filenko N, Spiro S, Browning DF, Squire D, Overton TW, Cole J, Constantinidou C (2007) The NsrR regulon of Escherichia coli K-12 includes genes encoding the hybrid cluster protein and the periplasmic, respiratory nitrite reductase. J Bacteriol 189:4410–4417PubMedCentralPubMedCrossRefGoogle Scholar
  108. 108.
    Macedo S, Mitchell EP, RomÐo CV, Cooper SJ, Coelho R, Liu MY, Xavier AV, LeGall J, Bailey S, Garner DC, Hagen WR, Teixeira M, Carrondo MA, Lindley P (2002) Hybrid cluster proteins (HCPs) from Desulfovibrio desulfuricans ATCC 27774 and Desulfovibrio vulgaris (Hildenborough): X-ray structures at 1.25 Å resolution using synchrotron radiation. J Biol Inorg Chem 7:514–525Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Kirsty J. McLean
    • 1
  • Dominika Luciakova
    • 1
  • James Belcher
    • 1
  • Kang Lan Tee
    • 1
  • Andrew W. Munro
    • 1
    Email author
  1. 1.Manchester Institute of BiotechnologyThe University of ManchesterManchesterUK

Personalised recommendations