Skip to main content

Weighted Decomposition in High-Performance Lattice-Boltzmann Simulations: Are Some Lattice Sites More Equal than Others?

  • Conference paper
  • First Online:
Solving Software Challenges for Exascale (EASC 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8759))

Included in the following conference series:

Abstract

Obtaining a good load balance is a significant challenge in scaling up lattice-Boltzmann simulations of realistic sparse problems to the exascale. Here we analyze the effect of weighted decomposition on the performance of the HemeLB lattice-Boltzmann simulation environment, when applied to sparse domains. Prior to domain decomposition, we assign wall and in/outlet sites with increased weights which reflect their increased computational cost. We combine our weighted decomposition with a second optimization, which is to sort the lattice sites according to a space filling curve. We tested these strategies on a sparse bifurcation and very sparse aneurysm geometry, and find that using weights reduces calculation load imbalance by up to 85 %, although the overall communication overhead is higher than some of our runs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Palabos LBM Wiki (2011). http://wiki.palabos.org/

  2. Cresta case study: application soars above petascale after tools collaboration (2014). http://www.cresta-project.eu/images/cresta_casestudy1_2014.pdf

  3. ParMETIS (2014). http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview

  4. Axner, L., Bernsdorf, J., Zeiser, T., Lammers, P., Linxweiler, J., Hoekstra, A.G.: Performance evaluation of a parallel sparse lattice Boltzmann solver. J. Computat. Phys. 227(10), 4895–4911 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  5. Barad, M.F., Colella, P., Schladow, S.G.: An adaptive cut-cell method for environmental fluid mechanics. Int. J. Numer. Methods Fluids 60(5), 473–514 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bhatnagar, P.L., Gross, E.P., Krook, M.: A model for collision processes in gases. i. small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94, 511–525 (1954)

    Article  MATH  Google Scholar 

  7. Bouzidi, M., Firdaouss, M., Lallemand, P.: Momentum transfer of a Boltzmann-lattice fluid with boundaries. Phys. Fluids 13(11), 3452–3459 (2001)

    Article  Google Scholar 

  8. Carver, H.B., Groen, D., Hetherington, J., Nash, R.W., Bernabeu, M.O., Coveney, P.V.: Coalesced communication: a design pattern for complex parallel scientific software. Advances in Engineering Software (2015, in press)

    Google Scholar 

  9. Catalyurek, U.V., Boman, E.G., Devine, K.D., Bozdag, D., Heaphy, R., Riesen, L.A.: Hypergraph-based dynamic load balancing for adaptive scientific computations. In: IEEE International Parallel and Distributed Processing Symposium, 2007, IPDPS 2007, pp. 1–11. IEEE (2007)

    Google Scholar 

  10. Godenschwager, C., Schornbaum, F., Bauer, M., Köstler, H., Rüde, U.: A framework for hybrid parallel flow simulations with a trillion cells in complex geometries. In: Proceedings of SC13: International Conference for High Performance Computing, Networking, Storage and Analysis, SC 2013, pp. 35:1–35:12. ACM, New York (2013)

    Google Scholar 

  11. Groen, D., Borgdorff, J., Bona-Casas, C., Hetherington, J., Nash, R.W., Zasada, S.J., Saverchenko, I., Mamonski, M., Kurowski, K., Bernabeu, M.O., Hoekstra, A.G., Coveney, P.V.: Flexible composition and execution of high performance, high fidelity multiscale biomedical simulations. Interface Focus 3(2), 20120087 (2013)

    Article  Google Scholar 

  12. Groen, D., Henrich, O., Janoschek, F., Coveney, P.V., Harting, J.: Lattice-boltzmann methods in fluid dynamics: turbulence and complex colloidal fluids. In: Jülich Blue Gene/P Extreme Scaling Workshop (2011)

    Google Scholar 

  13. Groen, D., Hetherington, J., Carver, H.B., Nash, R.W., Bernabeu, M.O., Coveney, P.V.: Analyzing and modeling the performance of the HemeLB lattice-Boltzmann simulation environment. J. Comput. Sci. 4(5), 412–422 (2013)

    Article  Google Scholar 

  14. Hasert, M., Masilamani, K., Zimny, S., Klimach, H., Qi, J., Bernsdorf, J., Roller, S.: Complex fluid simulations with the parallel tree-based lattice boltzmannsolver musubi. J. Comput. Sci. 5, 784–794 (2013)

    Article  MathSciNet  Google Scholar 

  15. Hendrickson, B., Kolda, T.G.: Graph partitioning models for parallel computing. Parallel Comput. 26(12), 1519–1534 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  16. Mazzeo, M.D., Coveney, P.V.: HemeLB: a high performance parallel lattice-Boltzmann code for large scale fluid flow in complex geometries. Comput. Phys. Commun. 178(12), 894–914 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  17. Mazzeo, M.D., Manos, S., Coveney, P.V.: In situ ray tracing and computational steering for interactive blood flow simulation. Comput. Phys. Commun. 181, 355–370 (2010)

    Article  MATH  Google Scholar 

  18. Nash, R.W., Carver, H.B., Bernabeu, M.O., Hetherington, J., Groen, D., Krüger, T., Coveney, P.V.: Choice of boundary condition for lattice-Boltzmann simulation of moderate Reynolds number flow in complex domains. Phys. Rev. E 89, 023303 (2014)

    Article  Google Scholar 

  19. Peters, A., Melchionna, S., Kaxiras, E., Lätt, J., Sircar, J., Bernaschi, M., Bison, M., Succi, S.: Multiscale simulation of cardiovascular flows on the ibm bluegene/p: full heart-circulation system at red-blood cell resolution. In: Proceedings of the 2010 ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis, SC 2010, Washington, DC, USA, pp. 1–10. IEEE Computer Society (2010)

    Google Scholar 

Download references

Acknowledgements

We thank Timm Krueger for his valuable input. This work has received funding from the CRESTA and MAPPER projects within the EC-FP7 (ICT-2011.9.13) under Grant Agreements nos. 287703 and 261507, and from EPSRC Grants EP/I017909/1 (www.2020science.net) and EP/I034602/1. This work made use of the HECToR supercomputer at EPCC in Edinburgh, funded by the Office of Science and Technology through EPSRC’s High End Computing Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derek Groen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Groen, D., Chacra, D.A., Nash, R.W., Jaros, J., Bernabeu, M.O., Coveney, P.V. (2015). Weighted Decomposition in High-Performance Lattice-Boltzmann Simulations: Are Some Lattice Sites More Equal than Others?. In: Markidis, S., Laure, E. (eds) Solving Software Challenges for Exascale. EASC 2014. Lecture Notes in Computer Science(), vol 8759. Springer, Cham. https://doi.org/10.1007/978-3-319-15976-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15976-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15975-1

  • Online ISBN: 978-3-319-15976-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics