Skip to main content

Assessing Drivers of Vegetation Changes in Drylands from Time Series of Earth Observation Data

  • Chapter
Remote Sensing Time Series

Abstract

This chapter summarizes methods of inferring information about drivers of global dryland vegetation changes observed from remote sensing time series data covering from the 1980s until present time. Earth observation (EO) based time series of vegetation metrics, sea surface temperature (SST) (both from the AVHRR (Advanced Very High Resolution Radiometer) series of instruments) and precipitation data (blended satellite/rain gauge) are used for determining the mechanisms of observed changes. EO-based methods to better distinguish between climate and human induced (land use) vegetation changes are reviewed. The techniques presented include trend analysis based on the Rain-Use Efficiency (RUE) and the Residual Trend Analysis (RESTREND) and the methodological challenges related to the use of these. Finally, teleconnections between global sea surface temperature (SST) anomalies and dryland vegetation productivity are illustrated and the associated predictive capabilities are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adeel Z, World Resources Institute (2005) Ecosystems and human well-being: desertification synthesis: a report of the millennium ecosystem assessment. World Resources Institute, Washington, DC

    Google Scholar 

  • Adler RF, Huffman GJ, Chang A, Ferraro R, Xie PP, Janowiak J, Rudolf B, Schneider U, Curtis S, Bolvin D, Gruber A, Susskind J, Arkin P, Nelkin E (2003) The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present). J Hydrometeorol 4:1147–1167

    Article  Google Scholar 

  • Anyamba A, Eastman JR (1996) Interannual variability of NDVI over Africa and its relation to El Nino Southern Oscillation. Int J Remote Sens 17:2533–2548

    Article  Google Scholar 

  • Anyamba A, Tucker CJ (2005) Analysis of Sahelian vegetation dynamics using NOAA-AVHRR NDVI data from 1981–2003. J Arid Environ 63:596–614

    Article  Google Scholar 

  • Anyamba A, Tucker CJ, Eastman JR (2001) NDVI anomaly patterns over Africa during the 1997/98 ENSO warm event. Int J Remote Sens 22:1847–1859

    Article  Google Scholar 

  • Archer ERM (2004) Beyond the “climate versus grazing” impasse: using remote sensing to investigate the effects of grazing system choice on vegetation cover in the eastern Karoo. J Arid Environ 57:381–408

    Article  Google Scholar 

  • Bader J, Latif M (2003) The impact of decadal-scale Indian Ocean sea surface temperature anomalies on Sahelian rainfall and the North Atlantic Oscillation. Geophys Res Lett 30:2169. doi:10.1029/2003GL018426

    Article  Google Scholar 

  • Bai ZG, Dent DL, Olsson L, Schaepman ME (2008) Proxy global assessment of land degradation. Soil Use Manag 24:223–234

    Article  Google Scholar 

  • Biasutti M, Held IM, Sobel AH, Giannini A (2008) SST forcings and Sahel rainfall variability in simulations of the twentieth and twenty-first centuries. J Clim 21:3471–3486

    Article  Google Scholar 

  • Breman H, Dewit CT (1983) Rangeland productivity and exploitation in the Sahel. Science 221:1341–1347

    Article  Google Scholar 

  • Brown ME, de Beurs K, Vrieling A (2010) The response of African land surface phenology to large scale climate oscillations. Remote Sens Environ 114:2286–2296

    Article  Google Scholar 

  • Camberlin P, Janicot S, Poccard I (2001) Seasonality and atmospheric dynamics of the teleconnection between African rainfall and tropical sea-surface temperature: Atlantic vs. ENSO. Int J Climatol 21:973–1005

    Article  Google Scholar 

  • Caminade C, Terray L (2010) Twentieth century Sahel rainfall variability as simulated by the ARPEGE AGCM, and future changes. Clim Dyn 35:75–94

    Article  Google Scholar 

  • de Jong R, Verbesselt J, Schaepman ME, de Bruin S (2012) Trend changes in global greening and browning: contribution of short-term trends to longer-term change. Glob Chang Biol 18:642–655

    Article  Google Scholar 

  • de Jong R, Schaepman ME, Furrer R, De Bruin S, Verburg PH (2013a) Spatial relationship between climatologies and changes in global vegetation activity. Glob Chang Biol 19:1953–1964

    Article  Google Scholar 

  • de Jong R, Verbesselt J, Zeileis A, Schaepman ME (2013b) Shifts in global vegetation activity trends. Remote Sens 5:1117–1133

    Article  Google Scholar 

  • del Barrio G, Puigdefabregas J, Sanjuan ME, Stellmes M, Ruiz A (2010) Assessment and monitoring of land condition in the Iberian Peninsula, 1989–2000. Remote Sens Environ 114:1817–1832

    Article  Google Scholar 

  • Eklundh L, Olsson L (2003) Vegetation index trends for the African Sahel 1982–1999. Geophys Res Lett 30(8)

    Google Scholar 

  • Evans J, Geerken R (2004) Discrimination between climate and human-induced dryland degradation. J Arid Environ 57:535–554

    Article  Google Scholar 

  • Fensholt R, Rasmussen K (2011) Analysis of trends in the Sahelian ‘rain-use efficiency’ using GIMMS NDVI, RFE and GPCP rainfall data. Remote Sens Environ 115:438–451

    Article  Google Scholar 

  • Fensholt R, Langanke T, Rasmussen K, Reenberg A, Prince SD, Tucker C, Scholes RJ, Le QB, Bondeau A, Eastman R, Epstein H, Gaughan AE, Hellden U, Mbow C, Olsson L, Paruelo J, Schweitzer C, Seaquist J, Wessels K (2012) Greenness in semi-arid areas across the globe 1981–2007 – an Earth observing satellite based analysis of trends and drivers. Remote Sens Environ 121:144–158

    Article  Google Scholar 

  • Fensholt R, Rasmussen K, Kaspersen P, Huber S, Horion S, Swinnen E (2013) Assessing land degradation/recovery in the African Sahel from long-term earth observation based primary productivity and precipitation relationships. Remote Sens 5:664–686

    Article  Google Scholar 

  • Folland CK, Palmer TN, Parker DE (1986) Sahel rainfall and worldwide sea temperatures, 1901–85. Nature 320:602–607

    Article  Google Scholar 

  • Giannini A, Saravanan R, Chang P (2003) Oceanic forcing of Sahel rainfall on interannual to interdecadal time scales. Science 302:1027–1030

    Article  Google Scholar 

  • Hein L (2006) The impacts of grazing and rainfall variability on the dynamics of a Sahelian rangeland. J Arid Environ 64:488–504

    Article  Google Scholar 

  • Hein L, de Ridder N (2006) Desertification in the Sahel: a reinterpretation. Glob Chang Biol 12:751–758

    Article  Google Scholar 

  • Hein L, de Ridder N, Hiernaux P, Leemans R, de Wit A, Schaepman M (2011) Desertification in the Sahel: towards better accounting for ecosystem dynamics in the interpretation of remote sensing images. J Arid Environ 75:1164–1172

    Article  Google Scholar 

  • Herrmann SM, Anyamba A, Tucker CJ (2005) Recent trends in vegetation dynamics in the African Sahel and their relationship to climate. Glob Environ Change-Hum Policy Dimens 15:394–404

    Article  Google Scholar 

  • Hickler T, Eklundh L, Seaquist JW, Smith B, Ardo J, Olsson L, Sykes MT, Sjostrom M (2005) Precipitation controls Sahel greening trend. Geophys Res Lett 32(21)

    Google Scholar 

  • Hu ZM, Yu GR, Fan JW, Zhong HP, Wang SQ, Li SG (2010) Precipitation-use efficiency along a 4500-km grassland transect. Glob Ecol Biogeogr 19:842–851

    Article  Google Scholar 

  • Huber S, Fensholt R (2011) Analysis of teleconnections between AVHRR-based sea surface temperature and vegetation productivity in the semi-arid Sahel. Remote Sens Environ 115:3276–3285

    Article  Google Scholar 

  • Huber S, Fensholt R, Rasmussen K (2011) Water availability as the driver of vegetation dynamics in the African Sahel from 1982 to 2007. Glob Planet Chang 76:186–195

    Article  Google Scholar 

  • Huffman GJ, Adler RF, Bolvin DT, Gu GJ, Nelkin EJ, Bowman KP, Hong Y, Stocker EF, Wolff DB (2007) The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J Hydrometeorol 8:38–55

    Article  Google Scholar 

  • Huffman GJ, Adler RF, Bolvin DT, Gu G (2009) Improving the global precipitation record: GPCP version 2.1. Geophys Res Lett. 36:L17808. doi:10.1029/2009GL040000

  • Hulme M (2001) Climatic perspectives on Sahelian desiccation: 1973–1998. Glob Environ Change-Hum Policy Dimens 11:19–29

    Article  Google Scholar 

  • Huxman TE, Smith MD, Fay PA, Knapp AK, Shaw MR, Loik ME, Smith SD, Tissue DT, Zak JC, Weltzin JF, Pockman WT, Sala OE, Haddad BM, Harte J, Koch GW, Schwinning S, Small EE, Williams DG (2004) Convergence across biomes to a common rain-use efficiency. Nature 429:651–654

    Article  Google Scholar 

  • Janicot S, Harzallah A, Fontaine B, Moron V (1998) West African monsoon dynamics and eastern equatorial Atlantic and Pacific SST anomalies (1970–88). J Clim 11:1874–1882

    Article  Google Scholar 

  • Lamb PJ (1978) Large-scale tropical Atlantic surface circulation patterns associated with sub-Saharan weather anomalies. Tellus 30:240–251

    Article  Google Scholar 

  • Lamb PJ (1982) Persistence of sub-Saharan drought. Nature 299:46–48

    Article  Google Scholar 

  • Le Houérou HN (1984) Rain use efficiency – a unifying concept in arid-land ecology. J Arid Environ 7:213–247

    Google Scholar 

  • Le Houérou HN (1989) The grazing land ecosystems of the African Sahel. Springer, Berlin/New York

    Book  Google Scholar 

  • Lebel T, Ali A (2009) Recent trends in the Central and Western Sahel rainfall regime (1990–2007). J Hydrol 375:52–64

    Article  Google Scholar 

  • Lu J (2009) The dynamics of the Indian Ocean sea surface temperature forcing of Sahel drought. Clim Dyn 33:445–460

    Article  Google Scholar 

  • Mao JF, Shi XY, Thornton PE, Hoffman FM, Zhu ZC, Myneni RB (2013) Global latitudinal-asymmetric vegetation growth trends and their driving mechanisms: 1982–2009. Remote Sens 5:1484–1497

    Article  Google Scholar 

  • Mohino E, Janicot S, Bader J (2011) Sahel rainfall and decadal to multi-decadal sea surface temperature variability. Clim Dyn 37:419–440

    Article  Google Scholar 

  • Nemani RR, Keeling CD, Hashimoto H, Jolly WM, Piper SC, Tucker CJ, Myneni RB, Running SW (2003) Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300:1560–1563

    Article  Google Scholar 

  • Nicholson SE (2000) The nature of rainfall variability over Africa on time scales of decades to millenia. Glob Planet Chang 26:137–158

    Article  Google Scholar 

  • Oba G, Post E, Stenseth NC (2001) Sub-Saharan desertification and productivity are linked to hemispheric climate variability. Glob Chang Biol 7:241–246

    Article  Google Scholar 

  • Palmer TN (1986) Influence of the Atlantic, Pacific and Indian Oceans on Sahel Rainfall. Nature 322:251–253

    Article  Google Scholar 

  • Paruelo JM, Lauenroth WK, Burke IC, Sala OE (1999) Grassland precipitation-use efficiency varies across a resource gradient. Ecosystems 2:64–68

    Article  Google Scholar 

  • Philippon N, Jarlan L, Martiny N, Camberlin P, Mougin E (2007) Characterization of the interannual and intraseasonal variability of West African vegetation between 1982 and 2002 by means of NOAA AVHRR NDVI data. J Clim 20:1202–1218

    Article  Google Scholar 

  • Prince SD (2002) Spatial and temporal scales of measurement of desertification. In: Stafford‐Smith M, Reynolds JF (eds) Global desertification: do humans create deserts? Dahlem University Press, Berlin, pp 23–40

    Google Scholar 

  • Prince SD, De Colstoun EB, Kravitz LL (1998) Evidence from rain-use efficiencies does not indicate extensive Sahelian desertification. Glob Chang Biol 4:359–374

    Article  Google Scholar 

  • Prince SD, Wessels KJ, Tucker CJ, Nicholson SE (2007) Desertification in the Sahel: a reinterpretation of a reinterpretation. Glob Chang Biol 13:1308–1313

    Article  Google Scholar 

  • Propastin P, Fotso L, Kappas M (2010) Assessment of vegetation vulnerability to ENSO warm events over Africa. Int J Appl Earth Obs Geoinform 12:S83–S89

    Article  Google Scholar 

  • Raicich F, Pinardi N, Navarra A (2003) Teleconnections between Indian monsoon and Sahel rainfall and the Mediterranean. Int J Climatol 23:173–186

    Article  Google Scholar 

  • Rasmussen K, Fog B, Madsen JE (2001) Desertification in reverse? Observations from northern Burkina Faso. Global Environ Change-Hum Policy Dimens 11:271–282

    Article  Google Scholar 

  • Rowell DP (2003) The impact of Mediterranean SSTs on the Sahelian rainfall season. J Clim 16:849–862

    Article  Google Scholar 

  • Ruppert JC, Holm A, Miehe S, Muldavin E, Snyman HA, Wesche K, Linstadter A (2012) Meta-analysis of ANPP and rain-use efficiency confirms indicative value for degradation and supports non-linear response along precipitation gradients in drylands. J Veg Sci 23:1035–1050

    Article  Google Scholar 

  • Seaquist JW, Hickler T, Eklundh L, Ardo J, Heumann BW (2009) Disentangling the effects of climate and people on Sahel vegetation dynamics. Biogeosciences 6:469–477

    Article  Google Scholar 

  • Seaquist J, Lehsten V, Lindeskog M, Eklundh L (2012) Analyzing vegetation dynamics by combining remote sensing with process-based ecosystem models. In: Workshop on temporal analysis of satellite images, Mykonos, Greece

    Google Scholar 

  • Shanahan TM, Overpeck JT, Anchukaitis KJ, Beck JW, Cole JE, Dettman DL, Peck JA, Scholz CA, King JW (2009) Atlantic forcing of persistent drought in West Africa. Science 324:377–380

    Article  Google Scholar 

  • Sitch S, Smith B, Prentice IC, Arneth A, Bondeau A, Cramer W, Kaplan JO, Levis S, Lucht W, Sykes MT, Thonicke K, Venevsky S (2003) Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob Chang Biol 9:161–185

    Article  Google Scholar 

  • UNCCD Secretariat (2013) A stronger UNCCD for a land-degradation neutral world, Issue Brief, Bonn, Germany

    Google Scholar 

  • United Nations Environment Programme (2007) Sudan: post-conflict environmental assessment. United Nations Environment Programme, Nairobi

    Google Scholar 

  • Verbesselt J, Hyndman R, Newnham G, Culvenor D (2010a) Detecting trend and sea-sonal changes in satellite image time series. Remote Sens Environ 114:106–115

    Article  Google Scholar 

  • Verbesselt J, Hyndman R, Zeileis A, Culvenor D (2010b) Phenological change detection while accounting for abrupt and gradual trends in satellite image time series. Remote Sens Environ 114:2970–2980

    Article  Google Scholar 

  • Verbesselt J, Zeileis A, Herold M (2012) Near real-time disturbance detection using satellite image time series. Remote Sens Environ 123:98–108

    Article  Google Scholar 

  • Veron SR, Oesterheld M, Paruelo JM (2005) Production as a function of resource availability: slopes and efficiencies are different. J Veg Sci 16:351–354

    Article  Google Scholar 

  • Wang GL (2003) Reassessing the impact of North Atlantic Oscillation on the sub-Saharan vegetation productivity. Glob Chang Biol 9:493–499

    Article  Google Scholar 

  • Ward MN (1998) Diagnosis and short-lead time prediction of summer rainfall in tropical North Africa at interannual and multidecadal timescales. J Clim 11:3167–3191

    Article  Google Scholar 

  • Wessels KJ, Prince SD, Malherbe J, Small J, Frost PE, VanZyl D (2007) Can human-induced land degradation be distinguished from the effects of rainfall variability? A case study in South Africa. J Arid Environ 68:271–297

    Article  Google Scholar 

  • Wessels KJ, van den Bergh F, Scholes RJ (2012) Limits to detectability of land degradation by trend analysis of vegetation index data. Remote Sens Environ 125:10–22

    Article  Google Scholar 

  • Williams CA, Hanan NP (2011) ENSO and IOD teleconnections for African ecosystems: evidence of destructive interference between climate oscillations. Biogeosciences 8:27–40

    Article  Google Scholar 

  • Xie PP, Arkin PA (1997) Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull Am Meteorol Soc 78:2539–2558

    Article  Google Scholar 

Download references

Acknowledgements

This book chapter is written within the frame of the project entitled Earth Observation based Vegetation productivity and Land Degradation Trends in Global Drylands. The project is funded by the Danish Council for Independent Research (DFF) Sapere Aude programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rasmus Fensholt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fensholt, R. et al. (2015). Assessing Drivers of Vegetation Changes in Drylands from Time Series of Earth Observation Data. In: Kuenzer, C., Dech, S., Wagner, W. (eds) Remote Sensing Time Series. Remote Sensing and Digital Image Processing, vol 22. Springer, Cham. https://doi.org/10.1007/978-3-319-15967-6_9

Download citation

Publish with us

Policies and ethics