Skip to main content

Analysis of Snow Cover Time Series – Opportunities and Techniques

  • Chapter
  • 4516 Accesses

Part of the book series: Remote Sensing and Digital Image Processing ((RDIP,volume 22))

Abstract

Snow cover is one of the most dynamic land cover parameters that can be monitored from space and plays an important role for the Earth’s climate system and hydrological circle. While the spatial extent can be limited to narrow mountain ridges during summer, the snow cover percentage on the Northern Hemisphere may exceed 50 % (Lemke et al., Observations: changes in snow, ice and frozen ground. In: Solomon S, Qin D, Manning M, Chen Z, Marquis MC, Averyt K, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contributions of Working Group 1 to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge and New York, pp 337–383, 2007) of the total land surface (~45 million km2) during winter seasons (Barry et al., Global outlook for ice & snow. United Nations Environment Programme, Hertfordshire, 2007). Remote sensing has been used since the early 1970s to map terrestrial snow cover (Brown, J Clim 13:2339–2355, 2000) and both – sensors as well as retrieval algorithms – have undergone a substantial development since that time. This chapter will give a short introduction on how snow cover can be monitored from space. Furthermore, techniques will be outlined that show how time series analyses can be applied to remotely sensed snow cover products to reduce the compromising effect of cloud cover and to investigate the fundamental characteristics of snow. Time series of snow cover data allow for various analyses covering the fields of hydrology, climate research, flood prediction and management, and economy. Short term variations and extreme events can be analysed as well as long term climatological trends, constituting time series of snow cover data a valuable tool for a large bandwidth of applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aoki T, Motoyoshi H, Kodama Y, Yasunari TJ, Sugiura K (2007) Variations of the snow physical parameters and their effects on albedo in Sapporo. Ann Glaciol 46:375–381

    Article  Google Scholar 

  • Ault TW, Czajkowski KP, Benko T, Coss J, Struble J, Spongberg A, Templin M, Gross C (2006) Validation of the MODIS snow product and cloud mask using student and NWS cooperative station observations in the Lower Great Lakes Region. Remote Sens Environ 105:341–353. doi:10.1016/j.rse.2006.07.004

    Article  Google Scholar 

  • Bales RC, Dressler KA, Imam B, Fassnacht SR, Lampkin D (2008) Fractional snow cover in the Colorado and Rio Grande basins, 1995–2002. Water Resour Res 44:1–10. doi:10.1029/2006WR005377

    Article  Google Scholar 

  • Barnett TP, Adam JC, Lettenmaier DP (2005) Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 438:303–309. doi:10.1038/nature04141

    Article  Google Scholar 

  • Barry RG, Armstrong R, Callaghan T, Cherry J, Gearheard S, Nolin A, Russel D, Zaeckler C (2007) Global outlook for ice & snow. United Nations Environment Programme, Hertfordshire

    Google Scholar 

  • Belz JU, Rademacher S (2007) Die Niedrigwasser-Situation in den Bundeswasserstraßen im April 2007 (in German). Koblenz

    Google Scholar 

  • Brown RD (2000) Northern Hemisphere snow cover variability and change, 1915–97. J Clim 13:2339–2355

    Article  Google Scholar 

  • Brown RD, Mote PW (2009) The response of Northern Hemisphere snow cover to a changing climate. J Clim 22:2124–2145. doi:10.1175/2008JCLI2665.1

    Article  Google Scholar 

  • Butt MJ, Bilal M (2011) Application of snowmelt runoff model for water resource management. Hydrol Process 25:3735–3747. doi:10.1002/hyp.8099

    Article  Google Scholar 

  • Choi G, Robinson DA, Kang S (2010) Changing Northern Hemisphere snow seasons. J Clim 23:5305–5310. doi:10.1175/2010JCLI3644.1

    Article  Google Scholar 

  • Crane RG, Anderson MR (1984) Satellite discrimination of snow/cloud surfaces. Int J Remote Sens 5:213–223. doi:10.1080/01431168408948799

    Article  Google Scholar 

  • Dietz AJ (2013) Central Asian snow cover characteristics between 1986 and 2012 derived from time series of medium resolution remote sensing data. Wuerzburg

    Google Scholar 

  • Dietz AJ, Kuenzer C, Gessner U, Dech S (2012a) Remote sensing of snow – a review of available methods. Int J Remote Sens 13:4094–4134

    Article  Google Scholar 

  • Dietz AJ, Wohner C, Kuenzer C (2012b) European snow cover characteristics between 2000 and 2011 derived from improved MODIS daily snow cover products. Remote Sens 4:2432–2454. doi:10.3390/rs4082432

    Article  Google Scholar 

  • Dietz AJ, Kuenzer C, Conrad C (2013) Snow-cover variability in central Asia between 2000 and 2011 derived from improved MODIS daily snow-cover products. Int J Remote Sens 34:3879–3902

    Article  Google Scholar 

  • Donlon C, Berruti B, Buongiorno A, Ferreira MH, Féménias P, Frerick J, Goryl P, Klein U, Laur H, Mavrocordatos C, Nieke J, Rebhan H, Seitz B, Stroede J, Sciarra R (2012) The Global Monitoring for Environment and Security (GMES) Sentinel-3 mission. Remote Sens Environ 120:37–57. doi:10.1016/j.rse.2011.07.024

    Article  Google Scholar 

  • Dozier J (1989) Spectral signature of alpine snow cover from the Landsat thematic mapper. Remote Sens Environ 28:9–22

    Article  Google Scholar 

  • Dozier J, Painter TH, Rittger K, Frew JE (2008) Time–space continuity of daily maps of fractional snow cover and albedo from MODIS. Adv Water Resour 31:1515–1526. doi:10.1016/j.advwatres.2008.08.011

    Article  Google Scholar 

  • Drusch M, Del Bello U, Carlier S, Colin O, Fernandez V, Gascon F, Hoersch B, Isola C, Laberinti P, Martimort P, Meygret A, Spoto F, Sy O, Marchese F, Bargellini P (2012) Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sens Environ 120:25–36. doi:10.1016/j.rse.2011.11.026

    Article  Google Scholar 

  • ESA (2013a) ATSR. https://earth.esa.int/web/guest/missions/esa-operational-eo-missions/ers/instruments/atsr. Accessed 30 Nov 2014

  • ESA (2013b) AATSR. https://earth.esa.int/web/guest/missions/esa-operational-eo-missions/envisat/instruments/aatsr. Accessed 30 Nov 2014

  • Fernandes R, Zhao H (2008) Mapping daily snow cover extent over land surfaces using NOAA AVHRR imagery. In: Proceedings of the 5th EARSeL Workshop: remote sensing of land ice and snow. Bern, 11–13 Feb, pp 1–8

    Google Scholar 

  • Foster JL, Hall DK, Chang ATC, Rango A, Wergin W, Erbe E (1999) Effects of snow crystal shape on the scattering of passive microwave radiation. IEEE Trans Geosci Remote Sens 37:1165–1168

    Article  Google Scholar 

  • Frei A, Tedesco M, Lee S, Foster J, Hall DK, Kelly R, Robinson DA (2012) A review of global satellite-derived snow products. Adv Space Res 50:1007–1029. doi:10.1016/j.asr.2011.12.021

    Article  Google Scholar 

  • Gafurov A, Bárdossy A (2009) Cloud removal methodology from MODIS snow cover product. Hydrol Earth Syst Sci 13:1361–1373

    Article  Google Scholar 

  • Gesell G (1989) An algorithm for snow and ice detection using AVHRR data. An extension to the APOLLO software package. Int J Remote Sens 10:897–905. doi:10.1080/01431168908903929

    Article  Google Scholar 

  • Grippa M, Kergoat L, Le Toan T, Mognard NM, Delbart N, L’Hermitte J, Vicente-Serrano SM (2005) The impact of snow depth and snowmelt on the vegetation variability over central Siberia. Geophys Res Lett 32:2–5. doi:10.1029/2005GL024286

    Article  Google Scholar 

  • Hadley OL, Kirchstetter TW (2012) Black-carbon reduction of snow albedo. Nat Clim Chang 2:437–440. doi:10.1038/nclimate1433

    Article  Google Scholar 

  • Hall DK, Martinec J (1985) Remote sensing of ice and snow. Chapman & Hall, London

    Book  Google Scholar 

  • Hall D, Riggs G (2007) Accuracy assessment of the MODIS snow products. Hydrol Process 21:1534–1547. doi:10.1002/hyp

    Article  Google Scholar 

  • Hall DK, Riggs GA, Salomonson VV (1995) Development of methods for mapping global snow cover using moderate resolution imaging spectroradiometer data. Remote Sens Environ 54:127–140

    Article  Google Scholar 

  • Hall DK, Riggs GA, Salomonson, VV (2000) MODIS/Terra Snow Cover Daily L3 Global 500m Grid V005. National Snow and Ice Data Center. Digital media, Boulder, Colorado USA. http://nsidc.org/data/docs/daac/modis_v5/myd10a2_modis_aqua_snow_8-day_global_500m_grid.gd.html. Accessed 30 Nov 2014

  • Hall DK, Riggs GA, Salomonson VV, Digirolamo NE, Bayr KJ (2002) MODIS snow-cover products. Remote Sens Environ 83:181–194

    Article  Google Scholar 

  • Huang X, Liang T, Zhang X, Guo Z (2011) Validation of MODIS snow cover products using Landsat and ground measurements during the 2001–2005 snow seasons over northern Xinjiang, China. Int J Remote Sens 32:133–152. doi:10.1080/01431160903439924

    Article  Google Scholar 

  • Hüsler F, Jonas T, Wunderle S, Albrecht S (2012) Validation of a modified snow cover retrieval algorithm from historical 1-km AVHRR data over the European Alps. Remote Sens Environ 121:497–515. doi:10.1016/j.rse.2012.02.018

    Article  Google Scholar 

  • Khlopenkov KV, Trishchenko AP (2007) SPARC: new cloud, snow, and cloud shadow detection scheme for historical 1-km AVHHR data over Canada. J Atmos Ocean Technol 24:322–343. doi:10.1175/JTECH1987.1

    Article  Google Scholar 

  • Klein AG, Barnett AC (2003) Validation of daily MODIS snow cover maps of the Upper Rio Grande River Basin for the 2000–2001 snow year. Remote Sens Environ 86:162–176. doi:10.1016/S0034-4257(03)00097-X

    Article  Google Scholar 

  • Klein AG, Hall DK, Riggs GA (1998) Improving snow cover mapping in forests through the use of a canopy reflectance model. Hydrol Process 12:1723–1744. doi:10.1002/(SICI)1099-1085(199808/09)12:10/11<1723::AID-HYP691>3.3.CO;2-U

    Article  Google Scholar 

  • Klein AG, Hall DK, Nolin AW (2000) Development of a prototype snow albedo algorithm for the NASA MODIS instrument. In: 57th eastern snow conference, Syracuse, New York, USA, pp 143–158

    Google Scholar 

  • König M, Winther J, Isaksson E (2001) Measuring snow and glacier ice properties from satellite. Rev Geophys 39:1–27

    Article  Google Scholar 

  • Kriebel KT, Gesell G, Kästner M, Mannstein H (2003) The cloud analysis tool APOLLO: improvements and validations. Int J Remote Sens 24:2389–2408. doi:10.1080/01431160210163065

    Article  Google Scholar 

  • Lemke P, Ren J, Alley RB, Allison I, Carrasco J, Flato G, Fujii Y, Kaser G, Mote P, Thomas RH, Zhang T (2007) Observations: changes in snow, ice and frozen ground. In: Solomon S, Qin D, Manning M, Chen Z, Marquis MC, Averyt K, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contributions of Working Group 1 to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK/New York, pp 337–383

    Google Scholar 

  • Luojus KP, Pulliainen JT, Takala M, Kangwa M, Smolander T (2013) GlobSnow-2 product user guide. Finnish Meteorological Institute, Helsinki

    Google Scholar 

  • Malenovský Z, Rott H, Cihlar J, Schaepman ME, García-Santos G, Fernandes R, Berger M (2012) Sentinels for science: potential of Sentinel-1, -2, and -3 missions for scientific observations of ocean, cryosphere, and land. Remote Sens Environ 120:91–101. doi:10.1016/j.rse.2011.09.026

    Article  Google Scholar 

  • Martinec J, Rango A, Roberts R (1998) Snowmelt Runoff Model (SRM) User’s Manual (Updated Edition 1998), 4.0 ed. USDA Hydrology Laboratory, Beltsville, MD, USA

    Google Scholar 

  • Mauser W, Bach H (2009) PROMET – large scale distributed hydrological modelling to study the impact of climate change on the water flows of mountain watersheds. J Hydrol 376:362–377. doi:10.1016/j.jhydrol.2009.07.046

    Article  Google Scholar 

  • Metsamaki S, Anttila S, Markus H, Vepsalainen J (2005) A feasible method for fractional snow cover mapping in boreal zone based on a reflectance model. Remote Sens Environ 95:77–95. doi:10.1016/j.rse.2004.11.013

    Article  Google Scholar 

  • Muntán E, Garcia C, Oller P, Marti G, Garcia A, Gutiérrez E (2009) Reconstructing snow avalanches in the Southeastern Pyrenees. Nat Hazards Earth Syst Sci 9:1599–1612

    Article  Google Scholar 

  • NOAA (n.d.) Comprehensive large array-data stewardship system. http://www.class.noaa.gov. Accessed 18 Sept 2012

  • NSIDC (2013) NSIDC website. http://nsidc.org/. Accessed 28 Feb 2013

  • Painter TH, Rittger K, Mckenzie C, Slaughter P, Davis RE, Dozier J (2009) Retrieval of subpixel snow covered area, grain size, and albedo from MODIS. Remote Sens Environ 113:868–879. doi:10.1016/j.rse.2009.01.001

    Article  Google Scholar 

  • Parajka J, Pepe M, Rampini A, Rossi S, Blöschl G (2010) A regional snow-line method for estimating snow cover from MODIS during cloud cover. J Hydrol 381:203–212. doi:10.1016/j.jhydrol.2009.11.042

    Article  Google Scholar 

  • Pepe M, Brivio PA, Rampini A, Nodari FR, Boschetti M (2005) Snow cover monitoring in Alpine regions using ENVISAT optical data. Int J Remote Sens 26:4661–4667. doi:10.1080/01431160500206635

    Article  Google Scholar 

  • Räisänen J (2007) Warmer climate: less or more snow? Clim Dyn 30:307–319. doi:10.1007/s00382-007-0289-y

    Article  Google Scholar 

  • Räisänen J, Eklund J (2012) 21st century changes in snow climate in Northern Europe: a high-resolution view from ENSEMBLES regional climate models. Clim Dyn 38:2575–2591. doi:10.1007/s00382-011-1076-3

    Article  Google Scholar 

  • Rango A (1996) Spaceborne remote sensing for snow hydrology applications. Hydrol Sci J 41:477–494. doi:10.1080/02626669609491521

    Article  Google Scholar 

  • Rango A, van Katwijk V, Martinec J (1990) Snowmelt runoff forecasts in Colorado with remote sensing. Hydrology in mountainous regions. I – hydrological measurements; the water cycle. In: Proceedings of two Lausanne symposia, Aug 1990, pp 627–634

    Google Scholar 

  • Riggs G, Hall DK (2004) Snow mapping with the MODIS aqua instrument. In: 61st eastern snow conference, Portland, Maine, USA, pp 81–84

    Google Scholar 

  • Riggs GA, Hall DK, Salomonson VV (2006) MODIS snow products user guide to collection 5. Boulder, CO, USA

    Google Scholar 

  • Salminen M, Pulliainen J, Metsämäki S, Kontu A, Suokanerva H (2009) The behaviour of snow and snow-free surface reflectance in boreal forests: implications to the performance of snow covered area monitoring. Remote Sens Environ 113:907–918. doi:10.1016/j.rse.2008.12.008

    Article  Google Scholar 

  • Saunders RW, Kriebel KT (1988) An improved method for detecting clear sky and cloudy radiances from AVHRR data. Int J Remote Sens 9:123–150. doi:10.1080/01431168808954841

    Article  Google Scholar 

  • Scott PA, Wayne R (1995) Impacts of increased winter snow cover on upland tundra vegetation : a case example. Clim Res 5:25–30

    Article  Google Scholar 

  • Simic A, Fernandes R, Brown R, Romanov P, Park W (2004) Validation of VEGETATION, MODIS, and GOES+ SSM/I snow-cover products over Canada based on surface snow depth observations. Hydrol Process 18:1089–1104. doi:10.1002/hyp.5509

    Article  Google Scholar 

  • Solberg R, Andersen T (1994) An automatic system for operational snow-cover monitoring in the Norwegian mountain regions. In: Proceedings of the International Geoscience and Remote Sensing Symposium, Pasadena, CA, USA, 8–12 Aug 1994, pp 2084–2086

    Google Scholar 

  • Solberg R, Koren H, Amlien J (2006) A review of optical snow cover algorithms. Norwegian Computing Center Note, no. SAMBA/40/06

    Google Scholar 

  • Solberg R, Wangensteen B, Amlien J, Koren H, Metsämäki S, Nagler T, Luojus K, Pulliainen J (2010) A new global snow extent product based on ATSR-2 and AATSR. In: Proceedings of the 2010 I.E. International Geoscience and Remote Sensing Symposium, 25–30 July 2010, Honolulu, Hawaii, USA, p 4

    Google Scholar 

  • Tekeli AE, Akyürek Z, Şorman AA, Şensoy A, Şorman ÜA (2005) Using MODIS snow cover maps in modeling snowmelt runoff process in the eastern part of Turkey. Remote Sens Environ 97(2):216–230. doi:10.1016/j.rse.2005.03.013

    Article  Google Scholar 

  • Thirel G, Salamon P, Burek P, Kalas M (2013) Assimilation of MODIS snow cover area data in a distributed hydrological model using the particle filter. Remote Sens 5:5825–5850. doi:10.3390/rs5115825

    Article  Google Scholar 

  • Thurman M (2011) Natural disaster risks in central Asia : a synthesis table of contents. UNDP Bureau for Crisis Prevention and Recovery

    Google Scholar 

  • Vikhamar D, Solberg R (2002) Subpixel mapping of snow cover in forests by optical remote sensing. Remote Sens Environ 84:69–82

    Article  Google Scholar 

  • Vikhamar D, Solberg R (2003) Snow-cover mapping in forests by constrained linear spectral unmixing of MODIS data. Remote Sens Environ 88:309–323. doi:10.1016/j.rse.2003.06.004

    Article  Google Scholar 

  • Wagner W, Verhoest NEC, Ludwig R, Tedesco M (2009) Remote sensing in hydrological sciences. Hydrol Earth Syst Sci 13:813–817

    Article  Google Scholar 

  • Wang X, Xie H, Liang T (2009) Development and assessment of combined Terra and Aqua MODIS snow cover products in Colorado. J Appl Remote Sens 3:1–15

    Google Scholar 

  • Weber M, Braun L, Mauser W, Prasch M (2010) Contribution of rain, snow- and icemelt in the Upper Danube discharge today and in the future. Geografia Fisica e Dinamica Quaternaria 33:221–230

    Google Scholar 

  • WMO and GCOS (2011) Systematic observation requirements for satellite-based data products for climate – 2011 update, GCOS – 154 ed. WMO and GCOS, Geneva, Switzerland

    Google Scholar 

  • Wylie D, Jackson DL, Menzel WP, Bates JJ (2005) Trends in global cloud cover in two decades of HIRS observations. J Clim 18:3021–3031

    Article  Google Scholar 

  • Zhao Q, Liu Z, Ye B, Qin Y, Wei Z, Fang S (2009) A snowmelt runoff forecasting model coupling WRF and DHSVM. Hydrol Earth Syst Sci 13:1897–1906

    Article  Google Scholar 

  • Zhou H, Aizen E, Aizen V (2013) Deriving long term snow cover extent dataset from AVHRR and MODIS data: Central Asia case study. Remote Sens Environ 136:146–162. doi:10.1016/j.rse.2013.04.015

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas J. Dietz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dietz, A.J., Kuenzer, C., Dech, S. (2015). Analysis of Snow Cover Time Series – Opportunities and Techniques. In: Kuenzer, C., Dech, S., Wagner, W. (eds) Remote Sensing Time Series. Remote Sensing and Digital Image Processing, vol 22. Springer, Cham. https://doi.org/10.1007/978-3-319-15967-6_4

Download citation

Publish with us

Policies and ethics