Skip to main content

Investigating Radar Time Series for Hydrological Characterisation in the Lower Mekong Basin

  • Chapter
Remote Sensing Time Series

Part of the book series: Remote Sensing and Digital Image Processing ((RDIP,volume 22))

Abstract

Radar remote sensing is beneficial for retrieval of hydrological information such as soil moisture and flood extents due to the strong influence of water on the radar signal. The proper monitoring and analysis of such temporally dynamic phenomena requires dense time series data. Radar time series data is also useful for mitigating uncertainties in individual images, e.g. for the mapping of permanent water bodies. This chapter reviews capabilities, potentials and challenges of spaceborne radar time series data for the mapping of permanent water bodies, the monitoring of floods, and the retrieval of soil moisture content. The focus is put on the Lower Mekong Basin (LMB) in Southeast Asia. Two thirds of the LMB’s population of 60 million people live directly from agriculture and fisheries. The Mekong River's resources are under pressure among others from an increasing population, intensified agriculture, and the expansion of hydropower. A thorough understanding of water resources in the LMB is therefore crucial to the sustainable development in the region. The chapter provides an outline of radar remote sensing for retrieval of hydrological information as well as an overview of the relevant operational capabilities of radar missions. A map of permanent water bodies of the entire Lower Mekong Basin derived from a time series of ENVISAT Advanced Synthetic Aperture Radar (ASAR) data is presented. Potentials and challenges of flood monitoring with SAR are illustrated with ASAR imagery showing the evolution of the floods that occurred around Tonle Sap Lake in Cambodia in 2011. Finally, the spatial and temporal dynamics of soil moisture across the LMB are analysed with the use of 14 years of scatterometer time series data acquired by the ERS-1, ERS-2, Metop-A and Metop-B satellites. The average seasonal soil moisture cycle was computed at the sub-catchment level. An anomaly analysis of the temporal soil moisture dynamics revealed large inter-annual variability across the Lower Mekong Basin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albergel C, Rüdiger C, Carrer D, Calvet JC, Fritz N, Naeimi V, Hasenauer S (2009) An evaluation of ASCAT surface soil moisture products with in-situ observations in Southwestern France. Hydrol Earth Syst Sci 13(2):115–124

    Article  Google Scholar 

  • Albergel C, de Rosnay P, Gruhier C, Muñoz-Sabater J, Hasenauer S, Isaksen L, Wagner W (2012) Evaluation of remotely sensed and modelled soil moisture products using global ground-based in situ observations. Remote Sens Environ 118:215–226. doi:10.1016/j.rse.2011.11.017

    Article  Google Scholar 

  • Alsdorf DE, Rodriguez E, Lettenmaier DP (2007) Measuring surface water from space. Rev Geophys 45(RG2002):1–24. doi:10.1029/2006RG000197

    Google Scholar 

  • Barrett BW, Dwyer E, Whelan P (2009) Soil moisture retrieval from active spaceborne microwave observations: an evaluation of current techniques. Remote Sens 1(3):210–242. doi:10.3390/rs1030210

    Article  Google Scholar 

  • Bartsch A, Trofaier AM, Hayman G, Sabel D, Schlaffer S, Clark DB, Blyth E (2012) Detection of open water dynamics with ENVISAT ASAR in support of land surface modelling at high latitudes. Biogeosciences 9(2):703–714. doi:10.5194/bg-9-703-2012

    Article  Google Scholar 

  • Bicheron P, Defourny P, Brockmann C, Schouten L, Vancutsem C, Huc M, Bontemps S, Leroy M, Achard F, Herol M, Ranera F, Arino O (2008) GLOBCOVER – products description and validation report. MEDIAS-France. Retrieved from http://publications.jrc.ec.europa.eu/repository/handle/JRC49240

  • Brocca L, Melone F, Moramarco T, Wagner W, Hasenauer S (2010) ASCAT soil wetness index validation through in situ and modeled soil moisture data in central Italy. Remote Sens Environ 114(11):2745–2755. doi:10.1016/j.rse.2010.06.009

    Article  Google Scholar 

  • Brocca L, Moramarco T, Melone F, Wagner W, Hasenauer S, Hahn S (2012) Assimilation of surface- and root-zone ASCAT soil moisture products into rainfall-runoff modeling. IEEE Trans Geosci Remote Sens 50(7):2542–2555. doi:10.1109/TGRS.2011.2177468

    Article  Google Scholar 

  • Carroll M, Townshend J, DiMiceli C, Noojipady P, Sohlberg R (2009) A New global raster water mask at 250 meter resolution. Int J Dig Earth 2(4)

    Google Scholar 

  • Ceballos A, Scipal K, Wagner W, Martinez-Fernandez J (2005) Validation of ERS scatterometer-derived soil moisture data in the central part of the Duero Basin, Spain. Hydrol Process 19(8):1549–1566

    Article  Google Scholar 

  • Covello F, Battazza F, Coletta A, Manoni G, Valentini G. (2009) COSMO-SkyMed mission status: three out of four satellites in orbit. In: International Geoscience and Remote Sensing Symposium (IGARSS), vol 2. ASI – Agenzia Spaziale Italiana, Viale Liegi 26, 00198, Rome, Italy. pp II773–II776

    Google Scholar 

  • De Rosnay P, Balsamo G, Albergel C, Muñoz-Sabater J, Isaksen L (2012) Initialisation of land surface variables for numerical weather prediction. Surv Geophys 35:607–621

    Article  Google Scholar 

  • Dent JE (2012) Climate and meteorological information requirements for water management: a review of issues. World Meterological Organization (WMO). ISBN 978-92-63-11094-7

    Google Scholar 

  • Dharssi I, Bovis KJ, Macpherson B, Jones CP (2011) Operational assimilation of ASCAT surface soil wetness at the Met Office. Hydrol Earth Syst Sci 15(8):2729–2746

    Article  Google Scholar 

  • Di Baldassarre G, Schumann G, Brandimarte L, Bates P (2011) Timely low resolution SAR imagery to support floodplain modelling: a case study review. Surv Geophys 32(3):255–269. doi:10.1007/s10712-011-9111-9

    Article  Google Scholar 

  • Dorigo WA, Scipal K, Parinussa RM, Liu YY, Wagner W, De Jeu RAM, Naeimi V (2010) Error characterisation of global active and passive microwave soil moisture datasets. Hydrol Earth Syst Sci 14(12):2605–2616

    Article  Google Scholar 

  • Drusch M, Del Bello U, Carlier S, Colin O, Fernandez V, Gascon F, Bargellini P (2012) Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sens Environ 120:25–36

    Article  Google Scholar 

  • Entin JK, Robock A, Vinnikov KY, Hollinger SE, Liu SX, Namkhai A (2000) Temporal and spatial scales of observed soil moisture variations in the extratropics. J Geophys Res-Atmos 105(D9):11865–11877

    Article  Google Scholar 

  • Frappart F, Seyler F, Martinez J-M, Leon JG, Cazenave A (2005) Floodplain water storage in the Negro River basin estimated from microwave remote sensing of inundation area and water levels. Remote Sens Environ 99:387–399. doi:10.1016/j.rse.2005.08.016

    Article  Google Scholar 

  • Frison PL, Mougin E (1996) Use of ERS-1 wind scatterometer data over land surfaces. IEEE Trans Geosci Remote Sens 34(2):550–560

    Article  Google Scholar 

  • Gauthier Y, Bernier M, Fortin JP (1998) Aspect and incidence angle sensitivity in ERS-1 SAR data. Int J Remote Sens 19(10):2001–2006

    Article  Google Scholar 

  • Gstaiger V, Huth J, Gebhardt S, Wehrmann T, Kuenzer C (2012) Multi-sensoral and automated derivation of inundated areas using TerraSAR-X and ENVISAT ASAR data. Int J Remote Sens 33(22):7291–7304

    Article  Google Scholar 

  • Han C, Guo H, Shao Y, Liao J (2005) Detection of the flood boundary in SAR image using texture. In: International Geoscience and Remote Sensing Symposium (IGARSS), vol 5. State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing Applications, Chinese Academy of Sciences, Beijing, 100101, China, pp 3697–3699

    Google Scholar 

  • Henderson FM, Lewis A (1998) Principles and applications of imaging radar, vol 2, 3rd edn, Manual of remote sensing. Wiley, New York

    Google Scholar 

  • Hess LL, Melack JM, Novo EMLM, Barbosa CCF, Gastil M (2003) Dual-season mapping of wetland inundation and vegetation for the central Amazon basin. Remote Sens Environ 87(4):404–428

    Article  Google Scholar 

  • Hornacek M, Wagner W, Sabel D, Truong HL, Snoeij P, Hahmann T, Doubkova M (2012) Potential for high resolution systematic global surface soil moisture retrieval via change detection using sentinel-1. IEEE J Select Top Appl Earth Obs Remote Sens 5(4):1303–1311

    Article  Google Scholar 

  • Kite G (2001) Modelling the Mekong: hydrological simulation for environmental impact studies. J Hydrol 253(1–4):1–13. doi:http://dx.doi.org/10.1016/S0022-1694(01)00396-1

  • Kornelsen KC, Coulibaly P (2013) Advances in soil moisture retrieval from synthetic aperture radar and hydrological applications. J Hydrol 476(0):460–489. doi:http://dx.doi.org/10.1016/j.jhydrol.2012.10.044

  • Kuenzer C (2013) Threatening Tonle Sap: challenges for Southeast Asia’s largest freshwater lake. Pac Geogr 40:29–31

    Google Scholar 

  • Kuenzer C, Campbell I, Roch M, Leinenkugel P, Tuan V, Dech S (2013a) Understanding the impact of hydropower developments in the context of upstream–downstream relations in the Mekong river basin. Sustain Sci 8(4):565–584. doi:10.1007/s11625-012-0195-z

    Article  Google Scholar 

  • Kuenzer C, Guo H, Huth J, Leinenkugel P, Li X, Dech S (2013b) Flood mapping and flood dynamics of the Mekong delta: ENVISAT-ASAR-WSM based time series analyses. Remote Sens 5(2):687–715

    Article  Google Scholar 

  • Legates DR, Mahmood R, Levia DF, DeLiberty TL, Quiring SM, Houser C, Nelson FE (2011) Soil moisture: a central and unifying theme in physical geography. Prog Phys Geogr 35(1):65–86. doi:10.1177/0309133310386514

    Article  Google Scholar 

  • Lehner B, Döll P (2004) Development and validation of a global database of lakes, reservoirs and wetlands. J Hydrol 296(1–4):1

    Article  Google Scholar 

  • Leinenkugel P, Kuenzer C, Dech S (2013) Comparison and enhancement of MODIS cloud mask products for Southeast Asia. Int J Remote Sens 34(8):2730–2748

    Article  Google Scholar 

  • Lin CC, Betto M, Rivas MB, Stoffelen A, de Kloe J (2012) EPS-SG windscatterometer concept tradeoffs and wind retrieval performance assessment. IEEE Trans Geosci Remote Sens 50(7):2458–2472. doi:10.1109/TGRS.2011.2180393

    Article  Google Scholar 

  • Loew A, Ludwig R, Mauser W (2006) Derivation of surface soil moisture from ENVISAT ASAR wide swath and image mode data in agricultural areas. IEEE Trans Geosci Remote Sens 44(4):889–899

    Article  Google Scholar 

  • Martinez J-M, Le Toan T (2007) Mapping of flood dynamics and spatial distribution of vegetation in the Amazon floodplain using multitemporal SAR data. Remote Sens Environ 108:209–223. doi:10.1016/j.rse.2006.11.012

    Article  Google Scholar 

  • Matgen P, Hostache R, Schumann G, Pfister L, Hoffmann L, Savenije HHG (2011) Towards an automated SAR-based flood monitoring system: lessons learned from two case studies. Phys Chem Earth 36(7–8):241–252

    Article  Google Scholar 

  • Matgen P, Giustarini L, Hostache R (2012a) A new automatic synthetic aperture radar-based flood mapping application hosted on the European Space Agency’s grid processing on demand fast access to imagery environment. Proc SPIE Int Soc Opt Eng 8538

    Google Scholar 

  • Matgen P, Heitz S, Hasenauer S, Hissler C, Brocca L, Hoffmann L, Savenije HHG (2012b) On the potential of MetOp ASCAT-derived soil wetness indices as a new aperture for hydrological monitoring and prediction: a field evaluation over Luxembourg. Hydrol Process 26(15):2346–2359

    Article  Google Scholar 

  • Mekong River Commission (MRC) (2005) Overview of the hydrology of the Mekong Basin. Mekong River Commission, Vientiane, p 73

    Google Scholar 

  • Mekong River Commission (MRC) (2009) Flood situation report 2008. Mekong River Commission, Vientiane

    Google Scholar 

  • Mekong River Commission (MRC) (2010) State of the basin report 2010. Mekong River Commission, Vientiane

    Google Scholar 

  • Mekong River Commission (MRC) (2011) Flood situation report 2011. Mekong River Commission, Phnom Penh

    Google Scholar 

  • Morena LC, James KV, Beck J (2004) An introduction to the RADARSAT-2 mission. Can J Remote Sens 30(3):221–234

    Article  Google Scholar 

  • Naeimi V, Scipal K, Bartalis Z, Hasenauer S, Wagner W (2009) An improved soil moisture retrieval algorithm for ERS and METOP scatterometer observations. IEEE Trans Geosci Remote Sens 47(7):1999–2013. doi:10.1109/TGRS.2008.2011617

    Article  Google Scholar 

  • Naeimi V, Leinenkugel P, Sabel D, Wagner W, Apel H, Kuenzer C (2013) Evaluation of soil moisture retrieval from the ERS and Metop scatterometers in the lower Mekong Basin. Remote Sens 5(4):1603–1623. doi:10.3390/rs5041603

    Article  Google Scholar 

  • O’Grady D, Leblanc M, Gillieson D (2011) Use of ENVISAT ASAR global monitoring mode to complement optical data in the mapping of rapid broad-scale flooding in Pakistan. Hydrol Earth Syst Sci 15(11):3475–3494. doi:10.5194/hess-15-3475-2011

    Article  Google Scholar 

  • OECD (2008) Space technologies and climate change: implications for water management, marine resources and maritime transport. OECD Publishing, Paris. doi:10.1787/9789264054196-en

  • Otsu N (1979) Threshold selection method from gray-level histograms. IEEE Trans Syst Man Cyber SMC-9(1):62–66

    Google Scholar 

  • Parajka J, Naeimi V, Blöschl G, Wagner W (2006) Assimilating scatterometer soil moisture data into conceptual hydrologic models at the regional scale, hydrology and earth system sciences. Hydrol Earth Syst Sci 10(3):353–368

    Article  Google Scholar 

  • Pitz W, Miller D (2010) The TerraSAR-X satellite. IEEE Trans Geosci Remote Sens 48(2):615–622

    Article  Google Scholar 

  • Pulvirenti L, Pierdicca N, Chini M, Guerriero L (2011) An algorithm for operational flood mapping from Synthetic Aperture Radar (SAR) data using fuzzy logic. Nat Hazards Earth Syst Sci 11(2):529–540. doi:10.5194/nhess-11-529-2011

    Article  Google Scholar 

  • Renaud F, Kuenzer C (2012) The water-development nexus: importance of knowledge, information and cooperation in the Mekong Delta. In: Renaud F, Kuenzer C (eds) The Mekong Delta system – interdisciplinary analyses of a river delta. Springer, Dordrecht, pp 445–458. doi:10.1007/978-94-007-3962-8

  • Rosenqvist A, Finlayson CM, Lowry J, Taylor D (2007) The potential of long-wavelength satellite-borne radar to support implementation of the Ramsar Wetlands Convention. Aquat Conserv – Mar Freshwat Ecosyst 17(3):229–244

    Article  Google Scholar 

  • Sabel D, Bartalis Z, Wagner W, Doubkova M, Klein JP (2012) Development of a Global Backscatter Model in support to the sentinel-1 mission design. Remote Sens Environ 120 (The Sentinel Missions – New Opportunities for Science):102–112. doi:10.1016/j.rse.2011.09.028

  • Schumann G, Bates PD, Horritt MS, Matgen P, Pappenberger F (2009) Progress in integration of remote sensing-derived flood extent and stage data and hydraulic models. Rev Geophys 47(4):1–20. doi:10.1029/2008RG000274

    Google Scholar 

  • Scipal K, Drusch M, Wagner W (2008) Assimilation of a ERS scatterometer derived soil moisture index in the ECMWF numerical weather prediction system. Adv Water Resour 31(8):1101–1112

    Article  Google Scholar 

  • Sentinel-1 Team (2013) Sentinel-1 user handbook. https://sentinel.esa.int. Accessed 30 Dec 2013

  • Snoeij P, Brown M, Davidson M, Rommen B, Floury N, Geudtner D, Torres R (2011) Sentinel-1A and sentinel-1B CSAR status. Proc SPIE 8179. doi:10.1117/12.898646

  • Townsend PA (2002) Estimating forest structure in wetlands using multitemporal SAR. Remote Sens Environ 79(2–3):288–304

    Article  Google Scholar 

  • Ulaby FT, Moore RK, Fung AK (1986) Microwave remote sensing: active and passive. Volume III: from theory to applications. Microwave remote sensing: active and passive. Artech House, Norwood

    Google Scholar 

  • Verhoest NEC, Lievens H, Wagner W, Álvarez-Mozos J, Moran MS (2008) On the soil roughness parameterization problem in soil moisture retrieval of bare surfaces from synthetic aperture radar. Sensors 8:4213–4248. doi:10.3390/s8074213

    Article  Google Scholar 

  • Vinnikov KY, Robock A, Speranskaya NA, Schlosser CA (1996) Scales of temporal and spatial variability of midlatitude soil moisture. J Geophys Res 101(D3):7163–7174

    Article  Google Scholar 

  • Wagner W, Lemoine G, Rott H (1999) A method for estimating soil moisture from ERS scatterometer and soil data. Remote Sens Environ 70(2):191–207. doi:10.1016/S0034-4257(99)00036-X

    Article  Google Scholar 

  • Wagner W, Blöschl G, Pampaloni P, Calvet J-C, Bizzarri B, Wigneron J-P, Kerr Y (2007) Operational readiness of microwave remote sensing of soil moisture for hydrologic applications. Nord Hydrol 38(1):1–20

    Article  Google Scholar 

  • Wagner W, Hahn S, Kidd R, Melzer T, Bartalis Z, Hasenauer S, Rubel F (2013) The ASCAT soil moisture product: a review of its specifications, validation results, and emerging applications. Meteorol Z 22(1):5–33

    Article  Google Scholar 

  • Westerhoff RS, Kleuskens MPH, Winsemius HC, Huizinga HJ, Brakenridge GR, Bishop C (2013) Automated global water mapping based on wide-swath orbital synthetic-aperture radar. Hydrol Earth Syst Sci 17(2):651–663

    Article  Google Scholar 

  • Woodhouse IH (2006) Introduction to microwave remote sensing. Taylor and Francis, Boca Raton

    Google Scholar 

  • Zhang L, Guo H, Li X, Wang L (2014) Ecosystem assessment in the Tonle Sap Lake region of Cambodia using RADARSAT-2 wide fine-mode SAR data. Int J Remote Sens 35(8):2875–2892. doi:10.1080/01431161.2014.890301

    Article  Google Scholar 

Download references

Acknowledgements

The work presented in this chapter was partially funded by the WISDOM project (Water related Information Management System for the Sustainable Development of the Mekong Delta), funded by the German Ministry of Education and Research, BMBF. ENVISAT ASAR data were provided by European Space Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Sabel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sabel, D., Naeimi, V., Greifeneder, F., Wagner, W. (2015). Investigating Radar Time Series for Hydrological Characterisation in the Lower Mekong Basin. In: Kuenzer, C., Dech, S., Wagner, W. (eds) Remote Sensing Time Series. Remote Sensing and Digital Image Processing, vol 22. Springer, Cham. https://doi.org/10.1007/978-3-319-15967-6_17

Download citation

Publish with us

Policies and ethics