Skip to main content

Abstract

Patients with acute coronary syndrome classically present with unstable angina, acute myocardial infarction, or sudden coronary death. In approximately 50–60 % of sudden coronary death cases, the culprit lesion exhibits an acute coronary thrombus, whereas the remainder of these cases have stable coronary plaques with greater than 75 % cross-sectional area luminal narrowing with or without chronic total occlusion or healed myocardial infarction. There are three main causes of coronary thrombosis: plaque rupture, erosion, and calcified nodule originally described from observations made at autopsy but now confirmed by optical coherence tomography. The most common cause of coronary thrombus is plaque rupture, which is characterized by a large necrotic core and a disrupted thin fibrous cap rich in macrophages that allows blood to come in contact with the highly thrombogenic necrotic core inducing luminal thrombosis. A few decades ago, it was proposed that matrix metalloproteinases liberated from macrophages were the main mechanism of fibrous cap disruption in coronary plaque rupture. On the other hand, in plaque erosion the platelet-rich thrombus is in direct contact with the intima, and the latter is rich in smooth muscle cells and proteoglycan-collagen matrix with an absence of endothelial lining. The underlying plaque in erosions consists of either pathological intimal thickening or thick fibrous cap fibroatheroma, and the frequency of these underlying lesions is similar. Calcified nodule is the least frequent cause of coronary thrombosis, which occurs in highly calcified arteries. The highly calcified arteries are composed of calcified sheets which likely break into multiple small calcified nodules that are surrounded by fibrin with a luminal thrombus. The eruptive calcified nodules are usually eccentric, protruding into the lumen, and there is an absence of endothelium and collagen above the nodules, and there is an associated platelet-rich luminal thrombus which is typically nonocclusive. This chapter focuses on plaque progression and includes the three responsible entities of thrombosis as we have learnt from studies carried out in sudden coronary death victims.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM. Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol. 2000;20(5):1262–75. PubMed PMID: 10807742, Epub 2000/05/16. eng.

    Article  CAS  PubMed  Google Scholar 

  2. Falk E, Nakano M, Bentzon JF, Finn AV, Virmani R. Update on acute coronary syndromes: the pathologists’ view. Eur Heart J. 2013;34:719–28. PubMed PMID: 23242196, Epub 2012/12/18. Eng.

    Article  CAS  PubMed  Google Scholar 

  3. Arbustini E, Dal Bello B, Morbini P, Burke AP, Bocciarelli M, Specchia G, et al. Plaque erosion is a major substrate for coronary thrombosis in acute myocardial infarction. Heart. 1999;82(3):269–72. PubMed PMID: 10455073, Pubmed Central PMCID: PMC1729173, Epub 1999/08/24. eng.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Velican C, Velican D. Discrepancies between data on atherosclerotic involvement of human coronary arteries furnished by gross inspection and by light microscopy. Atherosclerosis. 1982;43(1):39–49. PubMed PMID: 7092981.

    Article  CAS  PubMed  Google Scholar 

  5. Velican D, Velican C. Atherosclerotic involvement of the coronary arteries of adolescents and young adults. Atherosclerosis. 1980;36(4):449–60. PubMed PMID: 7417364.

    Article  CAS  PubMed  Google Scholar 

  6. Davies MJ, Thomas A. Thrombosis and acute coronary-artery lesions in sudden cardiac ischemic death. N Engl J Med. 1984;310(18):1137–40. PubMed PMID: 6709008.

    Article  CAS  PubMed  Google Scholar 

  7. Davies MJ. Stability and instability: two faces of coronary atherosclerosis. The Paul Dudley White Lecture 1995. Circulation. 1996;94(8):2013–20. PubMed PMID: 8873680.

    Article  CAS  PubMed  Google Scholar 

  8. Hixson JE, McMahan CA, McGill Jr HC, Strong JP. Apo B insertion/deletion polymorphisms are associated with atherosclerosis in young black but not young white males. Pathobiological Determinants of Atherosclerosis in Youth (PDAY) research group. Arterioscler Thromb J Vasc Biol/Am Heart Assoc. 1992;12(9):1023–9. PubMed PMID: 1525116. Epub 1992/09/11. eng.

    Article  CAS  Google Scholar 

  9. Stary HC, Chandler AB, Glagov S, Guyton JR, Insull Jr W, Rosenfeld ME, et al. A definition of initial, fatty streak, and intermediate lesions of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Arterioscler Thromb J Vasc Biol/Am Heart Assoc. 1994;14(5):840–56. PubMed PMID: 8172861. Epub 1994/05/01. eng.

    Article  CAS  Google Scholar 

  10. McGill Jr HC, McMahan CA, Malcom GT, Oalmann MC, Strong JP. Relation of glycohemoglobin and adiposity to atherosclerosis in youth. Pathobiological Determinants of Atherosclerosis in Youth (PDAY) Research Group. Arterioscler Thromb Vasc Biol. 1995;15(4):431–40. PubMed PMID: 7749853. Epub 1995/04/01. eng.

    Article  PubMed  Google Scholar 

  11. Strong JP, Malcom GT, Oalmann MC, Wissler RW. The PDAY study: natural history, risk factors, and pathobiology. Pathobiological determinants of atherosclerosis in youth. Ann N Y Acad Sci. 1997;811:226–35; discussion 35–7. PubMed PMID: 9186600. Epub 1997/04/15. eng.

    Article  CAS  PubMed  Google Scholar 

  12. Stary HC, Blankenhorn DH, Chandler AB, Glagov S, Insull Jr W, Richardson M, et al. A definition of the intima of human arteries and of its atherosclerosis-prone regions. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Arterioscler Thromb J Vasc Biol/Am Heart Assoc. 1992;12(1):120–34. PubMed PMID: 1731855.

    Article  CAS  Google Scholar 

  13. Stary HC, Chandler AB, Dinsmore RE, Fuster V, Glagov S, Insull Jr W, et al. A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Arterioscler Thromb Vasc Biol. 1995;15(9):1512–31. PubMed PMID: 7670967.

    Article  CAS  PubMed  Google Scholar 

  14. Austin MA, King MC, Vranizan KM, Krauss RM. Atherogenic lipoprotein phenotype. A proposed genetic marker for coronary heart disease risk. Circulation. 1990;82(2):495–506. PubMed PMID: 2372896, Epub 1990/08/01. eng.

    Article  CAS  PubMed  Google Scholar 

  15. Manjunath CN, Rawal JR, Irani PM, Madhu K. Atherogenic dyslipidemia. Indian J Endocrinol Metab. 2013;17(6):969–76. PubMed PMID: 24381869, Pubmed Central PMCID: PMC3872713, Epub 2014/01/02. eng.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Lamarche B, Tchernof A, Moorjani S, Cantin B, Dagenais GR, Lupien PJ, et al. Small, dense low-density lipoprotein particles as a predictor of the risk of ischemic heart disease in men. Prospective results from the Quebec Cardiovascular Study. Circulation. 1997;95(1):69–75. PubMed PMID: 8994419, Epub 1997/01/07. eng.

    Article  CAS  PubMed  Google Scholar 

  17. Ikari Y, McManus BM, Kenyon J, Schwartz SM. Neonatal intima formation in the human coronary artery. Arterioscler Thromb Vasc Biol. 1999;19(9):2036–40. PubMed PMID: 10479643.

    Article  CAS  PubMed  Google Scholar 

  18. Nakashima Y, Chen YX, Kinukawa N, Sueishi K. Distributions of diffuse intimal thickening in human arteries: preferential expression in atherosclerosis-prone arteries from an early age. Virchows Arch. 2002;441(3):279–88. PubMed PMID: 12242525.

    Article  PubMed  Google Scholar 

  19. Orekhov AN, Andreeva ER, Mikhailova IA, Gordon D. Cell proliferation in normal and atherosclerotic human aorta: proliferative splash in lipid-rich lesions. Atherosclerosis. 1998;139(1):41–8. PubMed PMID: 9699890.

    Article  CAS  PubMed  Google Scholar 

  20. Imanishi T, McBride J, Ho Q, O’Brien KD, Schwartz SM, Han DK. Expression of cellular FLICE-inhibitory protein in human coronary arteries and in a rat vascular injury model. Am J Pathol. 2000;156(1):125–37. PubMed PMID: 10623660.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Fan J, Watanabe T. Inflammatory reactions in the pathogenesis of atherosclerosis. J Atheroscler Thromb. 2003;10(2):63–71. PubMed PMID: 12740479.

    Article  CAS  PubMed  Google Scholar 

  22. Aikawa M, Rabkin E, Okada Y, Voglic SJ, Clinton SK, Brinckerhoff CE, et al. Lipid lowering by diet reduces matrix metalloproteinase activity and increases collagen content of rabbit atheroma: a potential mechanism of lesion stabilization. Circulation. 1998;97(24):2433–44. PubMed PMID: 9641696.

    Article  CAS  PubMed  Google Scholar 

  23. Kockx MM, De Meyer GR, Muhring J, Jacob W, Bult H, Herman AG. Apoptosis and related proteins in different stages of human atherosclerotic plaques. Circulation. 1998;97(23):2307–15. PubMed PMID: 9639374, Epub 1998/06/25. eng.

    Article  CAS  PubMed  Google Scholar 

  24. Nakashima Y, Fujii H, Sumiyoshi S, Wight TN, Sueishi K. Early human atherosclerosis: accumulation of lipid and proteoglycans in intimal thickenings followed by macrophage infiltration. Arterioscler Thromb Vasc Biol. 2007;27(5):1159–65. PubMed PMID: 17303781.

    Article  CAS  PubMed  Google Scholar 

  25. Nakashima Y, Wight TN, Sueishi K. Early atherosclerosis in humans: role of diffuse intimal thickening and extracellular matrix proteoglycans. Cardiovasc Res. 2008;79(1):14–23. PubMed PMID: 18430750.

    Article  CAS  PubMed  Google Scholar 

  26. Merrilees MJ, Beaumont B, Scott LJ. Comparison of deposits of versican, biglycan and decorin in saphenous vein and internal thoracic, radial and coronary arteries: correlation to patency. Coron Artery Dis. 2001;12(1):7–16. PubMed PMID: 11211169, Epub 2001/02/24. eng.

    Article  CAS  PubMed  Google Scholar 

  27. Tulenko TN, Chen M, Mason PE, Mason RP. Physical effects of cholesterol on arterial smooth muscle membranes: evidence of immiscible cholesterol domains and alterations in bilayer width during atherogenesis. J Lipid Res. 1998;39(5):947–56. PubMed PMID: 9610760.

    CAS  PubMed  Google Scholar 

  28. Hoff HF, Bradley WA, Heideman CL, Gaubatz JW, Karagas MD, Gotto Jr AM. Characterization of low density lipoprotein-like particle in the human aorta from grossly normal and atherosclerotic regions. Biochim Biophys Acta. 1979;573(2):361–74. PubMed PMID: 221034.

    Article  CAS  PubMed  Google Scholar 

  29. Smith EB, Slater RS. The microdissection of large atherosclerotic plaques to give morphologically and topographically defined fractions for analysis. 1. The lipids in the isolated fractions. Atherosclerosis. 1972;15(1):37–56. PubMed PMID: 5013277.

    Article  CAS  PubMed  Google Scholar 

  30. Perales S, Alejandre MJ, Palomino-Morales R, Torres C, Iglesias J, Linares A. Effect of oxysterol-induced apoptosis of vascular smooth muscle cells on experimental hypercholesterolemia. J Biomed Biotechnol. 2009;2009:456208. PubMed PMID: 19727411.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Bennett MR, Evan GI, Schwartz SM. Apoptosis of human vascular smooth muscle cells derived from normal vessels and coronary atherosclerotic plaques. J Clin Invest. 1995;95(5):2266–74. PubMed PMID: 7738191. Pubmed Central PMCID: 295839. Epub 1995/05/01. eng.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Clarke MC, Talib S, Figg NL, Bennett MR. Vascular smooth muscle cell apoptosis induces interleukin-1-directed inflammation: effects of hyperlipidemia-mediated inhibition of phagocytosis. Circ Res. 2010;106(2):363–72. PubMed PMID: 19926874, Epub 2009/11/21. eng.

    Article  CAS  PubMed  Google Scholar 

  33. Ridker PM, Danielson E, Fonseca FA, Genest J, Gotto Jr AM, Kastelein JJ, et al. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N Engl J Med. 2008;359(21):2195–207. PubMed PMID: 18997196.

    Article  CAS  PubMed  Google Scholar 

  34. Otsuka F, Sakakura K, Yahagi K, Joner M, Virmani R. Has our understanding of calcification in human coronary atherosclerosis progressed? Arterioscler Thromb Vasc Biol. 2014;34(4):724–36. PubMed PMID: 24558104, Epub 2014/02/22. eng.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Clarke MC, Littlewood TD, Figg N, Maguire JJ, Davenport AP, Goddard M, et al. Chronic apoptosis of vascular smooth muscle cells accelerates atherosclerosis and promotes calcification and medial degeneration. Circ Res. 2008;102(12):1529–38. PubMed PMID: 18497329, Epub 2008/05/24. eng.

    Article  CAS  PubMed  Google Scholar 

  36. Tabas I. Cholesterol and phospholipid metabolism in macrophages. Biochim Biophys Acta. 2000;1529(1–3):164–74. PubMed PMID: 11111086.

    Article  CAS  PubMed  Google Scholar 

  37. Dove DE, Su YR, Swift LL, Linton MF, Fazio S. ACAT1 deficiency increases cholesterol synthesis in mouse peritoneal macrophages. Atherosclerosis. 2006;186(2):267–74. PubMed PMID: 16144700, Epub 2005/09/08. eng.

    Article  CAS  PubMed  Google Scholar 

  38. Tabas I, Marathe S, Keesler GA, Beatini N, Shiratori Y. Evidence that the initial up-regulation of phosphatidylcholine biosynthesis in free cholesterol-loaded macrophages is an adaptive response that prevents cholesterol-induced cellular necrosis. Proposed role of an eventual failure of this response in foam cell necrosis in advanced atherosclerosis. J Biol Chem. 1996;271(37):22773–81. PubMed PMID: 8798453.

    Article  CAS  PubMed  Google Scholar 

  39. Burke AP, Farb A, Malcom GT, Liang YH, Smialek J, Virmani R. Coronary risk factors and plaque morphology in men with coronary disease who died suddenly. N Engl J Med. 1997;336(18):1276–82. PubMed PMID: 9113930, Epub 1997/05/01. eng.

    Article  CAS  PubMed  Google Scholar 

  40. Libby P. Inflammation in atherosclerosis. Nature. 2002;420(6917):868–74. PubMed PMID: 12490960. Epub 2002/12/20. eng.

    Article  CAS  PubMed  Google Scholar 

  41. Burke AP, Kolodgie FD, Farb A, Weber DK, Malcom GT, Smialek J, et al. Healed plaque ruptures and sudden coronary death: evidence that subclinical rupture has a role in plaque progression. Circulation. 2001;103(7):934–40. PubMed PMID: 11181466, Epub 2001/02/22. eng.

    Article  CAS  PubMed  Google Scholar 

  42. Farb A, Burke AP, Tang AL, Liang TY, Mannan P, Smialek J, et al. Coronary plaque erosion without rupture into a lipid core. A frequent cause of coronary thrombosis in sudden coronary death. Circulation. 1996;93(7):1354–63. PubMed PMID: 8641024, Epub 1995/06/01. eng.

    Article  CAS  PubMed  Google Scholar 

  43. Mann J, Davies MJ. Mechanisms of progression in native coronary artery disease: role of healed plaque disruption. Heart. 1999;82(3):265–8. PubMed PMID: 10455072.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Libby P. Molecular bases of the acute coronary syndromes. Circulation. 1995;91(11):2844–50. PubMed PMID: 7758192, Epub 1995/06/01. eng.

    Article  CAS  PubMed  Google Scholar 

  45. Libby P. Coronary artery injury and the biology of atherosclerosis: inflammation, thrombosis, and stabilization. Am J Cardiol. 2000;86(8B):3J–8; discussion J-9J. PubMed PMID: 11081443. Epub 2000/11/18. eng.

    Article  CAS  PubMed  Google Scholar 

  46. Dollery CM, Owen CA, Sukhova GK, Krettek A, Shapiro SD, Libby P. Neutrophil elastase in human atherosclerotic plaques: production by macrophages. Circulation. 2003;107(22):2829–36. PubMed PMID: 12771009, Epub 2003/05/29. eng.

    Article  CAS  PubMed  Google Scholar 

  47. Herman MP, Sukhova GK, Libby P, Gerdes N, Tang N, Horton DB, et al. Expression of neutrophil collagenase (matrix metalloproteinase-8) in human atheroma: a novel collagenolytic pathway suggested by transcriptional profiling. Circulation. 2001;104(16):1899–904. PubMed PMID: 11602491, Epub 2001/10/17. eng.

    Article  CAS  PubMed  Google Scholar 

  48. Sukhova GK, Schonbeck U, Rabkin E, Schoen FJ, Poole AR, Billinghurst RC, et al. Evidence for increased collagenolysis by interstitial collagenases-1 and -3 in vulnerable human atheromatous plaques. Circulation. 1999;99(19):2503–9. PubMed PMID: 10330380.

    Article  CAS  PubMed  Google Scholar 

  49. Libby P. Changing concepts of atherogenesis. J Intern Med. 2000;247(3):349–58. PubMed PMID: 10762452, Epub 2000/04/13. eng.

    Article  CAS  PubMed  Google Scholar 

  50. Sukhova GK, Shi GP, Simon DI, Chapman HA, Libby P. Expression of the elastolytic cathepsins S and K in human atheroma and regulation of their production in smooth muscle cells. J Clin Invest. 1998;102(3):576–83. PubMed PMID: 9691094, Pubmed Central PMCID: 508918, Epub 1998/08/06. eng.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Galis ZS, Khatri JJ. Matrix metalloproteinases in vascular remodeling and atherogenesis: the good, the bad, and the ugly. Circ Res. 2002;90(3):251–62. PubMed PMID: 11861412, Epub 2002/02/28. eng.

    CAS  PubMed  Google Scholar 

  52. Kolodgie FD, Narula J, Guillo P, Virmani R. Apoptosis in human atherosclerotic plaques. Apoptosis Int J Prog Cell Death. 1999;4(1):5–10. PubMed PMID: 14634290, Epub 2003/11/25. eng.

    Article  CAS  Google Scholar 

  53. Geng YJ, Libby P. Progression of atheroma: a struggle between death and procreation. Arterioscler Thromb Vasc Biol. 2002;22(9):1370–80. PubMed PMID: 12231554, Epub 2002/09/17. eng.

    Article  CAS  PubMed  Google Scholar 

  54. Kolodgie FD, Burke AP, Farb A, Gold HK, Yuan J, Narula J, et al. The thin-cap fibroatheroma: a type of vulnerable plaque: the major precursor lesion to acute coronary syndromes. Curr Opin Cardiol. 2001;16(5):285–92. PubMed PMID: 11584167, Epub 2001/10/05. eng.

    Article  CAS  PubMed  Google Scholar 

  55. Geng YJ, Henderson LE, Levesque EB, Muszynski M, Libby P. Fas is expressed in human atherosclerotic intima and promotes apoptosis of cytokine-primed human vascular smooth muscle cells. Arterioscler Thromb Vasc Biol. 1997;17(10):2200–8. PubMed PMID: 9351390, Epub 1997/11/14. eng.

    Article  CAS  PubMed  Google Scholar 

  56. Zheng Y, Gardner SE, Clarke MC. Cell death, damage-associated molecular patterns, and sterile inflammation in cardiovascular disease. Arterioscler Thromb Vasc Biol. 2011;31(12):2781–6. PubMed PMID: 22096097, Epub 2011/11/19. eng.

    Article  CAS  PubMed  Google Scholar 

  57. Kolodgie FD, Narula J, Burke AP, Haider N, Farb A, Hui-Liang Y, et al. Localization of apoptotic macrophages at the site of plaque rupture in sudden coronary death. Am J Pathol. 2000;157(4):1259–68. PubMed PMID: 11021830, Pubmed Central PMCID: 1850160, Epub 2000/10/06. eng.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Kolodgie FD, Narula J, Haider N, Virmani R. Apoptosis in atherosclerosis. Does it contribute to plaque instability? Cardiol Clin. 2001;19(1):127–39. PubMed PMID: 11787806, 1. Epub 2002/01/15. eng.

    Article  CAS  PubMed  Google Scholar 

  59. Michel JB. Anoikis in the cardiovascular system: known and unknown extracellular mediators. Arterioscler Thromb Vasc Biol. 2003;23(12):2146–54. PubMed PMID: 14551156, Epub 2003/10/11. eng.

    Article  CAS  PubMed  Google Scholar 

  60. Galis ZS, Sukhova GK, Lark MW, Libby P. Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. J Clin Invest. 1994;94(6):2493–503. PubMed PMID: 7989608, Pubmed Central PMCID: PMC330083, Epub 1994/12/01. eng.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Williams JK, Heistad DD. Structure and function of vasa vasorum. Trends Cardiovasc Med. 1996;6(2):53–7. PubMed PMID: 21232275, Epub 1996/02/01. eng.

    Article  CAS  PubMed  Google Scholar 

  62. Kumamoto M, Nakashima Y, Sueishi K. Intimal neovascularization in human coronary atherosclerosis: its origin and pathophysiological significance. Hum Pathol. 1995;26(4):450–6. PubMed PMID: 7535741, Epub 1995/04/01. eng.

    Article  CAS  PubMed  Google Scholar 

  63. Boyle JJ. Heme and haemoglobin direct macrophage Mhem phenotype and counter foam cell formation in areas of intraplaque haemorrhage. Curr Opin Lipidol. 2012;23(5):453–61. PubMed PMID: 22777293, Epub 2012/07/11. Eng.

    Article  PubMed  Google Scholar 

  64. Virmani R, Roberts WC. Extravasated erythrocytes, iron, and fibrin in atherosclerotic plaques of coronary arteries in fatal coronary heart disease and their relation to luminal thrombus: frequency and significance in 57 necropsy patients and in 2958 five mm segments of 224 major epicardial coronary arteries. Am Heart J. 1983;105(5):788–97. PubMed PMID: 6846122, Epub 1983/05/01. eng.

    Article  CAS  PubMed  Google Scholar 

  65. Kolodgie FD, Gold HK, Burke AP, Fowler DR, Kruth HS, Weber DK, et al. Intraplaque hemorrhage and progression of coronary atheroma. N Engl J Med. 2003;349(24):2316–25. PubMed PMID: 14668457, Epub 2003/12/12. eng.

    Article  CAS  PubMed  Google Scholar 

  66. Pasterkamp G, van der Steen AF. Intraplaque hemorrhage: an imaging marker for atherosclerotic plaque destabilization? Arterioscler Thromb Vasc Biol. 2012;32(2):167–8. PubMed PMID: 22258898, Epub 2012/01/20. eng.

    Article  CAS  PubMed  Google Scholar 

  67. Li X, Vink A, Niessen HW, Kers J, de Boer OJ, Ploegmakers HJ, et al. Total burden of intraplaque hemorrhage in coronary arteries relates to the use of coumarin-type anticoagulants but not platelet aggregation inhibitors. Virchows Arch. 2014;465(6):723–9. PubMed PMID: 25246372. Epub 2014/09/24. Eng.

    Google Scholar 

  68. Kolodgie FD, Burke AP, Farb A, Weber DK, Kutys R, Wight TN, et al. Differential accumulation of proteoglycans and hyaluronan in culprit lesions: insights into plaque erosion. Arterioscler Thromb Vasc Biol. 2002;22(10):1642–8. PubMed PMID: 12377743, Epub 2002/10/16. eng.

    Article  CAS  PubMed  Google Scholar 

  69. van der Wal AC, Becker AE, van der Loos CM, Das PK. Site of intimal rupture or erosion of thrombosed coronary atherosclerotic plaques is characterized by an inflammatory process irrespective of the dominant plaque morphology. Circulation. 1994;89(1):36–44. PubMed PMID: 8281670, Epub 1994/01/01. eng.

    Article  PubMed  Google Scholar 

  70. Burke AP, Farb A, Malcom GT, Liang Y, Smialek J, Virmani R. Effect of risk factors on the mechanism of acute thrombosis and sudden coronary death in women. Circulation. 1998;97(21):2110–6. PubMed PMID: 9626170, Epub 1998/06/17. eng.

    Article  CAS  PubMed  Google Scholar 

  71. Schwartz RS, Burke A, Farb A, Kaye D, Lesser JR, Henry TD, et al. Microemboli and microvascular obstruction in acute coronary thrombosis and sudden coronary death: relation to epicardial plaque histopathology. J Am Coll Cardiol. 2009;54(23):2167–73. PubMed PMID: 19942088, Epub 2009/11/28. eng.

    Article  PubMed  Google Scholar 

  72. Kramer MC, Rittersma SZ, de Winter RJ, Ladich ER, Fowler DR, Liang YH, et al. Relationship of thrombus healing to underlying plaque morphology in sudden coronary death. J Am Coll Cardiol. 2010;55(2):122–32. PubMed PMID: 19818571, Epub 2009/10/13. eng.

    Article  PubMed  Google Scholar 

  73. Ferrante G, Nakano M, Prati F, Niccoli G, Mallus MT, Ramazzotti V, et al. High levels of systemic myeloperoxidase are associated with coronary plaque erosion in patients with acute coronary syndromes: a clinicopathological study. Circulation. 2010;122(24):2505–13. PubMed PMID: 21126969, Epub 2010/12/04. eng.

    Article  CAS  PubMed  Google Scholar 

  74. Prati F, Uemura S, Souteyrand G, Virmani R, Motreff P, Di Vito L, et al. OCT-based diagnosis and management of STEMI associated with intact fibrous cap. JACC Cardiovasc Imaging. 2013;6(3):283–7. PubMed PMID: 23473109, Epub 2013/03/12. eng.

    Article  PubMed  Google Scholar 

  75. Xu Y, Mintz GS, Tam A, McPherson JA, Iniguez A, Fajadet J, et al. Prevalence, distribution, predictors, and outcomes of patients with calcified nodules in native coronary arteries: a 3-vessel intravascular ultrasound analysis from Providing Regional Observations to Study Predictors of Events in the Coronary Tree (PROSPECT). Circulation. 2012;126(5):537–45. PubMed PMID: 22744975, Epub 2012/06/30. eng.

    Article  PubMed  Google Scholar 

  76. Jia H, Abtahian F, Aguirre AD, Lee S, Chia S, Lowe H, et al. In vivo diagnosis of plaque erosion and calcified nodule in patients with acute coronary syndrome by intravascular optical coherence tomography. J Am Coll Cardiol. 2013;62(19):1748–58. PubMed PMID: 23810884, Pubmed Central PMCID: 3874870, Epub 2013/07/03. eng.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renu Virmani MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Yahagi, K., Davis, H.R., Joner, M., Virmani, R. (2015). Atherosclerosis, Introduction and Pathophysiology. In: Jagadeesh, G., Balakumar, P., Maung-U, K. (eds) Pathophysiology and Pharmacotherapy of Cardiovascular Disease. Adis, Cham. https://doi.org/10.1007/978-3-319-15961-4_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15961-4_25

  • Publisher Name: Adis, Cham

  • Print ISBN: 978-3-319-15960-7

  • Online ISBN: 978-3-319-15961-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics