Skip to main content

Cardiac Hypertrophy and Hypertrophic Cardiomyopathy: Introduction and Management

  • Chapter
Pathophysiology and Pharmacotherapy of Cardiovascular Disease

Abstract

The magnitude of hypertrophic response of the left ventricle to pressure overload is variable and likely is mediated by genetic factors as well as other identified mechanisms. Myocardial hypertrophy is a common phenotype of multiple cardiac disease entities. Left ventricular hypertrophy (LVH) causes significant morbidity and mortality in adults. Increased pressure overload is a key stimulus for the development of LVH in hypertensive patients as well as in those with aortic valve stenosis through several molecular mechanisms. Hypertrophic cardiomyopathy (HCM) is present in 1 in 500 people in the general population and is the most common genetically transmitted cardiomyopathy. HCM can be caused by more than 1,400 different mutations and is transmitted in an autosomal dominant pattern. Many individuals affected by HCM are undiagnosed, and most do not experience lethal events or symptoms. However, those who develop symptoms such as dyspnea, angina, and lightheadedness can experience functional disability secondary to heart failure and stroke as well as to sudden cardiac death (SCD). The majority of HCM patients are treated medically with the initial aim of reduction of symptoms along with reducing the risk for SCD. Therapy of patients with HCM can be classified into medical, interventional/device, and surgical treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schatzkin A, Cupples LA, Heeren T, Morelock S, Kannel WB. Sudden death in the Framingham Heart Study. Differences in incidence and risk factors by sex and coronary disease status. Am J Epidemiol. 1984;120:888–99.

    CAS  PubMed  Google Scholar 

  2. Haider AW, Larson MG, Benjamin EJ, Levy D. Increased left ventricular mass and hypertrophy are associated with increased risk for sudden death. J Am Coll Cardiol. 1998;32:1454–9.

    CAS  PubMed  Google Scholar 

  3. Cuspidi C, Sala C, Muiesan ML, De Luca N, Schillaci G, Working Group on Heart, Hypertension of the Italian Society of Hypertension. Right ventricular hypertrophy in systemic hypertension: an updated review of clinical studies. J Hypertens. 2013;31:858–65.

    CAS  PubMed  Google Scholar 

  4. Cuspidi C, Negri F, Tadic MV, Sala C, Parati G. Left atrial enlargement and right ventricular hypertrophy in essential hypertension. Blood Press. 2014;23:89–95.

    PubMed  Google Scholar 

  5. Yilmaz A, Sechtem U. Diagnostic approach and differential diagnosis in patients with hypertrophied left ventricles. Heart. 2014;100:662–71. doi:10.1136/heartjnl-2011-301528.

    PubMed  Google Scholar 

  6. López JE, Myagmar B-E, Swigart PM, et al. β-myosin heavy chain is induced by pressure overload in a minor subpopulation of smaller mouse cardiac myocytes. Circ Res. 2011;109:629–38.

    PubMed Central  PubMed  Google Scholar 

  7. Hill JA, Olson EN. Cardiac plasticity. N Engl J Med. 2008;358:1370–80.

    CAS  PubMed  Google Scholar 

  8. Cacciapuoti F. Molecular mechanisms of left ventricular hypertrophy (LVH) in systemic hypertension (SH)-possible therapeutic perspectives. J Am Soc Hypertens JASH. 2011;5:449–55.

    CAS  Google Scholar 

  9. Marsiglia JDC, Pereira AC. Hypertrophic cardiomyopathy: how do mutations lead to disease? Arq Bras Cardiol. 2014;102:295–304.

    PubMed Central  CAS  PubMed  Google Scholar 

  10. Poggesi C, Ho CY. Muscle dysfunction in hypertrophic cardiomyopathy: what is needed to move to translation? J Muscle Res Cell Motil. 2014;35:37–45.

    PubMed Central  CAS  PubMed  Google Scholar 

  11. Frey N, Luedde M, Katus HA. Mechanisms of disease: hypertrophic cardiomyopathy. Nat Rev Cardiol. 2012;9:91–100.

    CAS  Google Scholar 

  12. Gaasch WH, Zile MR. Left ventricular structural remodeling in health and disease: with special emphasis on volume, mass, and geometry. J Am Coll Cardiol. 2011;58:1733–40.

    PubMed  Google Scholar 

  13. Stevens SM, Reinier K, Chugh SS. Increased left ventricular mass as a predictor of sudden cardiac death: is it time to put it to the test? Circ Arrhythm Electrophysiol. 2013;6:212–7.

    PubMed Central  PubMed  Google Scholar 

  14. Ganau A, Devereux RB, Roman MJ, et al. Patterns of left ventricular hypertrophy and geometric remodeling in essential hypertension. J Am Coll Cardiol. 1992;19:1550–8.

    CAS  PubMed  Google Scholar 

  15. Mosteller RD. Simplified calculation of body-surface area. N Engl J Med. 1987;317:1098.

    CAS  PubMed  Google Scholar 

  16. Lang RM, Bierig M, Devereux RB, et al. Recommendations for chamber quantification: a report from the American Society of Echocardiography’s Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr Off Publ Am Soc Echocardiogr. 2005;18:1440–63.

    Google Scholar 

  17. Grothues F, Smith GC, Moon JCC, et al. Comparison of interstudy reproducibility of cardiovascular magnetic resonance with two-dimensional echocardiography in normal subjects and in patients with heart failure or left ventricular hypertrophy. Am J Cardiol. 2002;90:29–34.

    PubMed  Google Scholar 

  18. Bottini PB, Carr AA, Prisant LM, Flickinger FW, Allison JD, Gottdiener JS. Magnetic resonance imaging compared to echocardiography to assess left ventricular mass in the hypertensive patient. Am J Hypertens. 1995;8:221–8.

    CAS  PubMed  Google Scholar 

  19. Ganau A, Devereux RB, Pickering TG, et al. Relation of left ventricular hemodynamic load and contractile performance to left ventricular mass in hypertension. Circulation. 1990;81:25–36.

    CAS  PubMed  Google Scholar 

  20. Devereux RB, Pickering TG, Harshfield GA, et al. Left ventricular hypertrophy in patients with hypertension: importance of blood pressure response to regularly recurring stress. Circulation. 1983;68:470–6.

    CAS  PubMed  Google Scholar 

  21. Drazner MH, Dries DL, Peshock RM, et al. Left ventricular hypertrophy is more prevalent in blacks than whites in the general population: the Dallas Heart Study. Hypertension. 2005;46:124–9.

    CAS  PubMed  Google Scholar 

  22. Kizer JR, Arnett DK, Bella JN, et al. Differences in left ventricular structure between black and white hypertensive adults: the Hypertension Genetic Epidemiology Network study. Hypertension. 2004;43:1182–8.

    CAS  PubMed  Google Scholar 

  23. Rodriguez CJ, Sciacca RR, Diez-Roux AV, et al. Relation between socioeconomic status, race-ethnicity, and left ventricular mass: the Northern Manhattan study. Hypertension. 2004;43:775–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  24. Aoki H, Izumo S, Sadoshima J. Angiotensin II activates RhoA in cardiac myocytes: a critical role of RhoA in angiotensin II-induced premyofibril formation. Circ Res. 1998;82:666–76.

    CAS  PubMed  Google Scholar 

  25. Dzau VJ. Tissue renin-angiotensin system in myocardial hypertrophy and failure. Arch Intern Med. 1993;153:937–42.

    CAS  PubMed  Google Scholar 

  26. Sadoshima J, Xu Y, Slayter HS, Izumo S. Autocrine release of angiotensin II mediates stretch-induced hypertrophy of cardiac myocytes in vitro. Cell. 1993;75:977–84.

    CAS  PubMed  Google Scholar 

  27. Cuspidi C, Ciulla M, Zanchetti A. Hypertensive myocardial fibrosis. Nephrol Dial Transplant Off Publ Eur Dial Transpl Assoc Eur Ren Assoc. 2006;21:20–3.

    Google Scholar 

  28. Mazzolai L, Nussberger J, Aubert JF, et al. Blood pressure-independent cardiac hypertrophy induced by locally activated renin-angiotensin system. Hypertension. 1998;31:1324–30.

    CAS  PubMed  Google Scholar 

  29. Harada M, Itoh H, Nakagawa O, et al. Significance of ventricular myocytes and nonmyocytes interaction during cardiocyte hypertrophy: evidence for endothelin-1 as a paracrine hypertrophic factor from cardiac nonmyocytes. Circulation. 1997;96:3737–44.

    CAS  PubMed  Google Scholar 

  30. Klingbeil AU, Schneider M, Martus P, Messerli FH, Schmieder RE. A meta-analysis of the effects of treatment on left ventricular mass in essential hypertension. Am J Med. 2003;115:41–6.

    PubMed  Google Scholar 

  31. Messaoudi S, Gravez B, Tarjus A, et al. Aldosterone-specific activation of cardiomyocyte mineralocorticoid receptor in vivo. Hypertension. 2013;61:361–7.

    CAS  PubMed  Google Scholar 

  32. Rocha R, Rudolph AE, Frierdich GE, et al. Aldosterone induces a vascular inflammatory phenotype in the rat heart. Am J Physiol Heart Circ Physiol. 2002;283:H1802–10.

    CAS  PubMed  Google Scholar 

  33. Sun Y, Zhang J, Lu L, Chen SS, Quinn MT, Weber KT. Aldosterone-induced inflammation in the rat heart: role of oxidative stress. Am J Pathol. 2002;161:1773–81.

    PubMed Central  CAS  PubMed  Google Scholar 

  34. Robert V, Silvestre JS, Charlemagne D, et al. Biological determinants of aldosterone-induced cardiac fibrosis in rats. Hypertension. 1995;26:971–8.

    CAS  PubMed  Google Scholar 

  35. Qin W, Rudolph AE, Bond BR, et al. Transgenic model of aldosterone-driven cardiac hypertrophy and heart failure. Circ Res. 2003;93:69–76.

    CAS  PubMed  Google Scholar 

  36. Tsukamoto O, Minamino T, Sanada S, et al. The antagonism of aldosterone receptor prevents the development of hypertensive heart failure induced by chronic inhibition of nitric oxide synthesis in rats. Cardiovasc Drugs Ther Spons Int Soc Cardiovasc Pharmacother. 2006;20:93–102.

    CAS  Google Scholar 

  37. Pitt B, Zannad F, Remme WJ, et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N Engl J Med. 1999;341:709–17.

    CAS  PubMed  Google Scholar 

  38. Pitt B, Remme W, Zannad F, et al. Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med. 2003;348:1309–21.

    CAS  PubMed  Google Scholar 

  39. Desai AS, Lewis EF, Li R, et al. Rationale and design of the treatment of preserved cardiac function heart failure with an aldosterone antagonist trial: a randomized, controlled study of spironolactone in patients with symptomatic heart failure and preserved ejection fraction. Am Heart J. 2011;162:966–72.e10.

    CAS  PubMed  Google Scholar 

  40. Shah AM, Shah SJ, Anand IS, et al. Cardiac structure and function in heart failure with preserved ejection fraction: baseline findings from the echocardiographic study of the Treatment of Preserved Cardiac Function Heart Failure with an Aldosterone Antagonist trial. Circ Heart Fail. 2014;7:104–15.

    CAS  PubMed  Google Scholar 

  41. Masaki T, Kimura S, Yanagisawa M, Goto K. Molecular and cellular mechanism of endothelin regulation. Implications for vascular function. Circulation. 1991;84:1457–68.

    CAS  PubMed  Google Scholar 

  42. Ichikawa KI, Hidai C, Okuda C, et al. Endogenous endothelin-1 mediates cardiac hypertrophy and switching of myosin heavy chain gene expression in rat ventricular myocardium. J Am Coll Cardiol. 1996;27:1286–91.

    CAS  PubMed  Google Scholar 

  43. Li Y, Ha T, Gao X, et al. NF-kappaB activation is required for the development of cardiac hypertrophy in vivo. Am J Physiol Heart Circ Physiol. 2004;287:H1712–20.

    CAS  PubMed  Google Scholar 

  44. Stansfield WE, Tang R-H, Moss NC, Baldwin AS, Willis MS, Selzman CH. Proteasome inhibition promotes regression of left ventricular hypertrophy. Am J Physiol Heart Circ Physiol. 2008;294:H645–50.

    CAS  PubMed  Google Scholar 

  45. Clerk A, Sugden PH. Small guanine nucleotide-binding proteins and myocardial hypertrophy. Circ Res. 2000;86:1019–23.

    CAS  PubMed  Google Scholar 

  46. Molkentin JD, Lu JR, Antos CL, et al. A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell. 1998;93:215–28.

    CAS  PubMed  Google Scholar 

  47. Post WS, Larson MG, Myers RH, Galderisi M, Levy D. Heritability of left ventricular mass: the Framingham Heart Study. Hypertension. 1997;30:1025–8.

    CAS  PubMed  Google Scholar 

  48. Dries DL, Victor RG, Rame JE, et al. Corin gene minor allele defined by 2 missense mutations is common in blacks and associated with high blood pressure and hypertension. Circulation. 2005;112:2403–10.

    CAS  PubMed  Google Scholar 

  49. Schunkert H, Hense HW, Holmer SR, et al. Association between a deletion polymorphism of the angiotensin-converting-enzyme gene and left ventricular hypertrophy. N Engl J Med. 1994;330:1634–8.

    CAS  PubMed  Google Scholar 

  50. Hernández D, Lacalzada J, Rufino M, et al. Prediction of left ventricular mass changes after renal transplantation by polymorphism of the angiotensin-converting-enzyme gene. Kidney Int. 1997;51:1205–11.

    PubMed  Google Scholar 

  51. Brull D, Dhamrait S, Myerson S, et al. Bradykinin B2BKR receptor polymorphism and left-ventricular growth response. Lancet. 2001;358:1155–6.

    CAS  PubMed  Google Scholar 

  52. Naghi JJ, Siegel RJ. Medical management of hypertrophic cardiomyopathy. Rev Cardiovasc Med. 2010;11:202–17.

    PubMed  Google Scholar 

  53. Maron BJ, Maron MS. Hypertrophic cardiomyopathy. Lancet. 2013;381:242–55.

    PubMed  Google Scholar 

  54. Maron BJ, Maron MS, Semsarian C. Genetics of hypertrophic cardiomyopathy after 20 years: clinical perspectives. J Am Coll Cardiol. 2012;60:705–15.

    PubMed  Google Scholar 

  55. Ingles J, Doolan A, Chiu C, Seidman J, Seidman C, Semsarian C. Compound and double mutations in patients with hypertrophic cardiomyopathy: implications for genetic testing and counselling. J Med Genet. 2005;42:e59.

    PubMed Central  CAS  PubMed  Google Scholar 

  56. Olivotto I, Girolami F, Ackerman MJ, et al. Myofilament protein gene mutation screening and outcome of patients with hypertrophic cardiomyopathy. Mayo Clin Proc. 2008;83:630–8.

    CAS  PubMed  Google Scholar 

  57. Ahmad F, Seidman JG, Seidman CE. The genetic basis for cardiac remodeling. Annu Rev Genomics Hum Genet. 2005;6:185–216.

    CAS  PubMed  Google Scholar 

  58. Watkins H, McKenna WJ, Thierfelder L, et al. Mutations in the genes for cardiac troponin T and alpha-tropomyosin in hypertrophic cardiomyopathy. N Engl J Med. 1995;332:1058–64.

    CAS  PubMed  Google Scholar 

  59. Charron P, Dubourg O, Desnos M, et al. Clinical features and prognostic implications of familial hypertrophic cardiomyopathy related to the cardiac myosin-binding protein C gene. Circulation. 1998;97:2230–6.

    CAS  PubMed  Google Scholar 

  60. Oliva-Sandoval MJ, Ruiz-Espejo F, Monserrat L, et al. Insights into genotype-phenotype correlation in hypertrophic cardiomyopathy. Findings from 18 Spanish families with a single mutation in MYBPC3. Heart Br Card Soc. 2010;96:1980–4.

    Google Scholar 

  61. Maron BJ, Spirito P, Ackerman MJ, et al. Prevention of sudden cardiac death with implantable cardioverter-defibrillators in children and adolescents with hypertrophic cardiomyopathy. J Am Coll Cardiol. 2013;61:1527–35.

    PubMed  Google Scholar 

  62. Maron BJ, Wolfson JK, Roberts WC. Relation between extent of cardiac muscle cell disorganization and left ventricular wall thickness in hypertrophic cardiomyopathy. Am J Cardiol. 1992;70:785–90.

    CAS  PubMed  Google Scholar 

  63. Geisterfer-Lowrance AA, Christe M, Conner DA, et al. A mouse model of familial hypertrophic cardiomyopathy. Science. 1996;272:731–4.

    CAS  PubMed  Google Scholar 

  64. Teekakirikul P, Eminaga S, Toka O, et al. Cardiac fibrosis in mice with hypertrophic cardiomyopathy is mediated by non-myocyte proliferation and requires Tgf-β. J Clin Invest. 2010;120:3520–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  65. Marian AJ, Wu Y, Lim DS, et al. A transgenic rabbit model for human hypertrophic cardiomyopathy. J Clin Invest. 1999;104:1683–92.

    PubMed Central  CAS  PubMed  Google Scholar 

  66. Kittleson MD, Meurs KM, Munro MJ, et al. Familial hypertrophic cardiomyopathy in maine coon cats: an animal model of human disease. Circulation. 1999;99:3172–80.

    CAS  PubMed  Google Scholar 

  67. Becker JR, Deo RC, Werdich AA, Panàkovà D, Coy S, MacRae CA. Human cardiomyopathy mutations induce myocyte hyperplasia and activate hypertrophic pathways during cardiogenesis in zebrafish. Dis Model Mech. 2011;4:400–10.

    PubMed Central  CAS  PubMed  Google Scholar 

  68. Lankford EB, Epstein ND, Fananapazir L, Sweeney HL. Abnormal contractile properties of muscle fibers expressing beta-myosin heavy chain gene mutations in patients with hypertrophic cardiomyopathy. J Clin Invest. 1995;95:1409–14.

    PubMed Central  CAS  PubMed  Google Scholar 

  69. Watkins H, Seidman CE, Seidman JG, Feng HS, Sweeney HL. Expression and functional assessment of a truncated cardiac troponin T that causes hypertrophic cardiomyopathy. Evidence for a dominant negative action. J Clin Invest. 1996;98:2456–61.

    PubMed Central  CAS  PubMed  Google Scholar 

  70. Seggewiss H, Gleichmann U, Faber L, Fassbender D, Schmidt HK, Strick S. Percutaneous transluminal septal myocardial ablation in hypertrophic obstructive cardiomyopathy: acute results and 3-month follow-up in 25 patients. J Am Coll Cardiol. 1998;31:252–8.

    CAS  PubMed  Google Scholar 

  71. Ommen SR, Maron BJ, Olivotto I, et al. Long-term effects of surgical septal myectomy on survival in patients with obstructive hypertrophic cardiomyopathy. J Am Coll Cardiol. 2005;46:470–6.

    PubMed  Google Scholar 

  72. Van Dockum WG, Beek AM, ten Cate FJ, et al. Early onset and progression of left ventricular remodeling after alcohol septal ablation in hypertrophic obstructive cardiomyopathy. Circulation. 2005;111:2503–8.

    PubMed  Google Scholar 

  73. Ashrafian H, Redwood C, Blair E, Watkins H. Hypertrophic cardiomyopathy: a paradigm for myocardial energy depletion. Trends Genet TIG. 2003;19:263–8.

    CAS  Google Scholar 

  74. Baudenbacher F, Schober T, Pinto JR, et al. Myofilament Ca2+ sensitization causes susceptibility to cardiac arrhythmia in mice. J Clin Invest. 2008;118:3893–903.

    PubMed Central  CAS  PubMed  Google Scholar 

  75. Crilley JG, Boehm EA, Blair E, et al. Hypertrophic cardiomyopathy due to sarcomeric gene mutations is characterized by impaired energy metabolism irrespective of the degree of hypertrophy. J Am Coll Cardiol. 2003;41:1776–82.

    CAS  PubMed  Google Scholar 

  76. Knollmann BC, Kirchhof P, Sirenko SG, et al. Familial hypertrophic cardiomyopathy-linked mutant troponin T causes stress-induced ventricular tachycardia and Ca2+-dependent action potential remodeling. Circ Res. 2003;92:428–36.

    CAS  PubMed  Google Scholar 

  77. Shivakumar K, Dostal DE, Boheler K, Baker KM, Lakatta EG. Differential response of cardiac fibroblasts from young adult and senescent rats to ANG II. Am J Physiol Heart Circ Physiol. 2003;284:H1454–9.

    CAS  PubMed  Google Scholar 

  78. Anon. http://clinicaltrials.gov/show/NCT01912534. Last Accessed 16 June 2014

  79. O’Hanlon R, Grasso A, Roughton M, et al. Prognostic significance of myocardial fibrosis in hypertrophic cardiomyopathy. J Am Coll Cardiol. 2010;56:867–74.

    PubMed  Google Scholar 

  80. Ho CY, López B, Coelho-Filho OR, et al. Myocardial fibrosis as an early manifestation of hypertrophic cardiomyopathy. N Engl J Med. 2010;363:552–63.

    PubMed Central  CAS  PubMed  Google Scholar 

  81. Gautel M. The sarcomere and the nucleus: functional links to hypertrophy, atrophy and sarcopenia. Adv Exp Med Biol. 2008;642:176–91.

    CAS  PubMed  Google Scholar 

  82. Abozguia K, Elliott P, McKenna W, et al. Metabolic modulator perhexiline corrects energy deficiency and improves exercise capacity in symptomatic hypertrophic cardiomyopathy. Circulation. 2010;122:1562–9.

    CAS  PubMed  Google Scholar 

  83. Perreault CL, Meuse AJ, Bentivegna LA, Morgan JP. Abnormal intracellular calcium handling in acute and chronic heart failure: role in systolic and diastolic dysfunction. Eur Heart J. 1990;11(Suppl C):8–21.

    CAS  PubMed  Google Scholar 

  84. Olivotto I, Girolami F, Sciagrà R, et al. Microvascular function is selectively impaired in patients with hypertrophic cardiomyopathy and sarcomere myofilament gene mutations. J Am Coll Cardiol. 2011;58:839–48.

    PubMed  Google Scholar 

  85. Cecchi F, Olivotto I, Gistri R, Lorenzoni R, Chiriatti G, Camici PG. Coronary microvascular dysfunction and prognosis in hypertrophic cardiomyopathy. N Engl J Med. 2003;349:1027–35.

    CAS  PubMed  Google Scholar 

  86. Anon. http://clinicaltrials.gov/show/NCT01721967. Last Accessed 16 June 2014

  87. Anon. http://clinicaltrials.gov/show/NCT02104583. Last Accessed 16 June 2014

  88. Adabag AS, Maron BJ, Appelbaum E, et al. Occurrence and frequency of arrhythmias in hypertrophic cardiomyopathy in relation to delayed enhancement on cardiovascular magnetic resonance. J Am Coll Cardiol. 2008;51:1369–74.

    PubMed  Google Scholar 

  89. Quarta CC, Kruger JL, Falk RH. Cardiac amyloidosis. Circulation. 2012;126:e178–82.

    PubMed  Google Scholar 

  90. Mahmood S, Palladini G, Sanchorawala V, Wechalekar A. Update on treatment of light chain amyloidosis. Haematologica. 2014;99:209–21.

    PubMed Central  CAS  PubMed  Google Scholar 

  91. Merlini G, Seldin DC, Gertz MA. Amyloidosis: pathogenesis and new therapeutic options. J Clin Oncol Off J Am Soc Clin Oncol. 2011;29:1924–33.

    Google Scholar 

  92. Coelho T, Adams D, Silva A, et al. Safety and efficacy of RNAi therapy for transthyretin amyloidosis. N Engl J Med. 2013;369:819–29.

    CAS  PubMed  Google Scholar 

  93. Banypersad SM, Moon JC, Whelan C, Hawkins PN, Wechalekar AD. Updates in cardiac amyloidosis: a review. J Am Heart Assoc. 2012;1:e000364.

    PubMed Central  PubMed  Google Scholar 

  94. Lin G, Dispenzieri A, Kyle R, Grogan M, Brady PA. Implantable cardioverter defibrillators in patients with cardiac amyloidosis. J Cardiovasc Electrophysiol. 2013;24:793–8.

    PubMed  Google Scholar 

  95. Kristen AV, Dengler TJ, Hegenbart U, et al. Prophylactic implantation of cardioverter-defibrillator in patients with severe cardiac amyloidosis and high risk for sudden cardiac death. Heart Rhythm Off J Heart Rhythm Soc. 2008;5:235–40.

    Google Scholar 

  96. Jaccard A, Moreau P, Leblond V, et al. High-dose melphalan versus melphalan plus dexamethasone for AL amyloidosis. N Engl J Med. 2007;357:1083–93.

    CAS  PubMed  Google Scholar 

  97. Merlini G, Wechalekar AD, Palladini G. Systemic light chain amyloidosis: an update for treating physicians. Blood. 2013;121:5124–30.

    CAS  PubMed  Google Scholar 

  98. Kastritis E, Wechalekar AD, Dimopoulos MA, et al. Bortezomib with or without dexamethasone in primary systemic (light chain) amyloidosis. J Clin Oncol Off J Am Soc Clin Oncol. 2010;28:1031–7.

    CAS  Google Scholar 

  99. Raichlin E, Daly RC, Rosen CB, et al. Combined heart and liver transplantation: a single-center experience. Transplantation. 2009;88:219–25.

    PubMed  Google Scholar 

  100. Pedrosa RP, Drager LF, Genta PR, et al. OBstructive sleep apnea is common and independently associated with atrial fibrillation in patients with hypertrophic cardiomyopathy. Chest J. 2010;137:1078–84.

    Google Scholar 

  101. Spirito P, Chiarella F, Carratino L, Berisso MZ, Bellotti P, Vecchio C. Clinical course and prognosis of hypertrophic cardiomyopathy in an outpatient population. N Engl J Med. 1989;320:749–55.

    CAS  PubMed  Google Scholar 

  102. Spirito P, Rapezzi C, Autore C, et al. Prognosis of asymptomatic patients with hypertrophic cardiomyopathy and nonsustained ventricular tachycardia. Circulation. 1994;90:2743–7.

    CAS  PubMed  Google Scholar 

  103. Cannan CR, Reeder GS, Bailey KR, Melton LJ, Gersh BJ. Natural history of hypertrophic cardiomyopathy. A population-based study, 1976 through 1990. Circulation. 1995;92:2488–95.

    CAS  PubMed  Google Scholar 

  104. Maron BJ, Olivotto I, Spirito P, et al. Epidemiology of hypertrophic cardiomyopathy-related death: revisited in a large non-referral-based patient population. Circulation. 2000;102:858–64.

    CAS  PubMed  Google Scholar 

  105. Geske JB, Sorajja P, Ommen SR, Nishimura RA. Left ventricular outflow tract gradient variability in hypertrophic cardiomyopathy. Clin Cardiol. 2009;32:397–402.

    PubMed  Google Scholar 

  106. Efthimiadis GK, Parcharidou DG, Giannakoulas G, et al. Left ventricular outflow tract obstruction as a risk factor for sudden cardiac death in hypertrophic cardiomyopathy. Am J Cardiol. 2009;104:695–9.

    PubMed  Google Scholar 

  107. Gersh BJ, Maron BJ, Bonow RO, et al. 2011 ACCF/AHA guideline for the diagnosis and treatment of hypertrophic cardiomyopathy a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines Developed in Collaboration with the American Association for Thoracic Surgery, American Society of Echocardiography, American Society of Nuclear Cardiology, Heart Failure Society of America, Heart Rhythm Society, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. J Am Coll Cardiol. 2011;58:e212–60.

    CAS  PubMed  Google Scholar 

  108. Swanton RH, Brooksby IA, Jenkins BS, Webb-Peploe MM. Hemodynamic studies of beta blockade in hypertrophic obstructive cardiomyopathy. Eur J Cardiol. 1977;5:327–41.

    CAS  PubMed  Google Scholar 

  109. Alvares RF, Goodwin JF. Non-invasive assessment of diastolic function in hypertrophic cardiomyopathy on and off beta adrenergic blocking drugs. Br Heart J. 1982;48:204–12.

    PubMed Central  CAS  PubMed  Google Scholar 

  110. Bourmayan C, Razavi A, Fournier C, et al. Effect of propranolol on left ventricular relaxation in hypertrophic cardiomyopathy: an echographic study. Am Heart J. 1985;109:1311–6.

    CAS  PubMed  Google Scholar 

  111. Kwon DH, Setser RM, Popović ZB, et al. Association of myocardial fibrosis, electrocardiography and ventricular tachyarrhythmia in hypertrophic cardiomyopathy: a delayed contrast enhanced MRI study. Int J Cardiovasc Imaging. 2008;24:617–25.

    PubMed  Google Scholar 

  112. Kwon DH, Smedira NG, Rodriguez ER, et al. Cardiac magnetic resonance detection of myocardial scarring in hypertrophic cardiomyopathy: correlation with histopathology and prevalence of ventricular tachycardia. J Am Coll Cardiol. 2009;54:242–9.

    PubMed  Google Scholar 

  113. Ostman-Smith I, Wettrell G, Riesenfeld T. A cohort study of childhood hypertrophic cardiomyopathy: improved survival following high-dose beta-adrenoceptor antagonist treatment. J Am Coll Cardiol. 1999;34:1813–22.

    CAS  PubMed  Google Scholar 

  114. Rosing DR, Kent KM, Maron BJ, Condit J, Epstein SE. Verapamil therapy: a new approach to pharmacologic treatment of hypertrophic cardiomyopathy. Chest. 1980;78:239–47.

    CAS  PubMed  Google Scholar 

  115. Bonow RO, Frederick TM, Bacharach SL, et al. Atrial systole and left ventricular filling in hypertrophic cardiomyopathy: effect of verapamil. Am J Cardiol. 1983;51:1386–91.

    CAS  PubMed  Google Scholar 

  116. Gistri R, Cecchi F, Choudhury L, et al. Effect of verapamil on absolute myocardial blood flow in hypertrophic cardiomyopathy. Am J Cardiol. 1994;74:363–8.

    CAS  PubMed  Google Scholar 

  117. Udelson JE, Bonow RO, O’Gara PT, et al. Verapamil prevents silent myocardial perfusion abnormalities during exercise in asymptomatic patients with hypertrophic cardiomyopathy. Circulation. 1989;79:1052–60.

    CAS  PubMed  Google Scholar 

  118. Taniguchi Y, Sugihara H, Ohtsuki K, et al. Effect of verapamil on myocardial ischemia in patients with hypertrophic cardiomyopathy: evaluation by exercise thallium-201 SPECT. J Cardiol. 1994;24:45–51.

    CAS  PubMed  Google Scholar 

  119. Betocchi S, Piscione F, Losi MA, et al. Effects of diltiazem on left ventricular systolic and diastolic function in hypertrophic cardiomyopathy. Am J Cardiol. 1996;78:451–7.

    CAS  PubMed  Google Scholar 

  120. Sugihara H, Taniguchi Y, Ito K, et al. Effects of diltiazem on myocardial perfusion abnormalities during exercise in patients with hypertrophic cardiomyopathy. Ann Nucl Med. 1998;12:349–54.

    CAS  PubMed  Google Scholar 

  121. Pollick C, Giacomini KM, Blaschke TF, et al. The cardiac effects of d- and l-disopyramide in normal subjects: a noninvasive study. Circulation. 1982;66:447–53.

    CAS  PubMed  Google Scholar 

  122. Pollick C. Muscular subaortic stenosis. N Engl J Med. 1982;307:997–9.

    CAS  PubMed  Google Scholar 

  123. Pollick C, Kimball B, Henderson M, Wigle ED. Disopyramide in hypertrophic cardiomyopathy I. Hemodynamic assessment after intravenous administration. Am J Cardiol. 1988;62:1248–51.

    CAS  PubMed  Google Scholar 

  124. Matsubara H, Nakatani S, Nagata S, et al. Salutary effect of disopyramide on left ventricular diastolic function in hypertrophic obstructive cardiomyopathy. J Am Coll Cardiol. 1995;26:768–75.

    CAS  PubMed  Google Scholar 

  125. Sumimoto T, Hamada M, Ohtani T, et al. Effect of disopyramide on systolic and early diastolic time intervals in patients with hypertrophic cardiomyopathy. J Clin Pharmacol. 1991;31:440–3.

    CAS  PubMed  Google Scholar 

  126. Pollick C. Disopyramide in hypertrophic cardiomyopathy. II. Noninvasive assessment after oral administration. Am J Cardiol. 1988;62:1252–5.

    CAS  PubMed  Google Scholar 

  127. Cokkinos DV, Salpeas D, Ioannou NE, Christoulas S. Combination of disopyramide and propranolol in hypertrophic cardiomyopathy. Can J Cardiol. 1989;5:33–6.

    CAS  PubMed  Google Scholar 

  128. Sherrid MV, Barac I, McKenna WJ, et al. Multicenter study of the efficacy and safety of disopyramide in obstructive hypertrophic cardiomyopathy. J Am Coll Cardiol. 2005;45:1251–8.

    CAS  PubMed  Google Scholar 

  129. Sherrid MV, Shetty A, Winson G, et al. Treatment of obstructive hypertrophic cardiomyopathy symptoms and gradient resistant to first-line therapy with β-blockade or verapamil. Circ Heart Fail. 2013;6:694–702.

    CAS  PubMed  Google Scholar 

  130. Niki K, Sugawara M, Asano R, et al. Disopyramide improves the balance between myocardial oxygen supply and demand in patients with hypertrophic obstructive cardiomyopathy. Heart Vessels. 1997;12:111–8.

    CAS  PubMed  Google Scholar 

  131. Elmariah S, Fifer MA. Medical, surgical and interventional management of hypertrophic cardiomyopathy with obstruction. Curr Treat Options Cardiovasc Med. 2012;14:665–78.

    PubMed  Google Scholar 

  132. McKenna WJ, Harris L, Rowland E, et al. Amiodarone for long-term management of patients with hypertrophic cardiomyopathy. Am J Cardiol. 1984;54:802–10.

    CAS  PubMed  Google Scholar 

  133. Robinson K, Frenneaux MP, Stockins B, Karatasakis G, Poloniecki JD, McKenna WJ. Atrial fibrillation in hypertrophic cardiomyopathy: a longitudinal study. J Am Coll Cardiol. 1990;15:1279–85.

    CAS  PubMed  Google Scholar 

  134. January CT, Wann LS, Alpert JS, et al. AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: executive summary a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the Heart Rhythm Society. J Am Coll Cardiol. 2014;2014. Available at: http://dx.doi.org/10.1016/j.jacc.2014.03.021. Accessed 23 May 2014.

  135. McKenna WJ, Oakley CM, Krikler DM, Goodwin JF. Improved survival with amiodarone in patients with hypertrophic cardiomyopathy and ventricular tachycardia. Br Heart J. 1985;53:412–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  136. Cecchi F, Olivotto I, Montereggi A, Squillatini G, Dolara A, Maron B. Prognostic value of non-sustained ventricular tachycardia and the potential role of amiodarone treatment in hypertrophic cardiomyopathy: assessment in an unselected non-referral based patient population. Heart. 1998;79:331–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  137. Fananapazir L, Leon MB, Bonow RO, Tracy CM, Cannon 3rd RO, Epstein SE. Sudden death during empiric amiodarone therapy in symptomatic hypertrophic cardiomyopathy. Am J Cardiol. 1991;67:169–74.

    CAS  PubMed  Google Scholar 

  138. Fananapazir L, Epstein SE. Value of electrophysiologic studies in hypertrophic cardiomyopathy treated with amiodarone. Am J Cardiol. 1991;67:175–82.

    CAS  PubMed  Google Scholar 

  139. Olivotto I, Gistri R, Petrone P, Pedemonte E, Vargiu D, Cecchi F. Maximum left ventricular thickness and risk of sudden death in patients with hypertrophic cardiomyopathy. J Am Coll Cardiol. 2003;41:315–21.

    PubMed  Google Scholar 

  140. Maron BJ, Shen WK, Link MS, et al. Efficacy of implantable cardioverter-defibrillators for the prevention of sudden death in patients with hypertrophic cardiomyopathy. N Engl J Med. 2000;342:365–73.

    CAS  PubMed  Google Scholar 

  141. Sadoshima J, Izumo S. Molecular characterization of angiotensin II–induced hypertrophy of cardiac myocytes and hyperplasia of cardiac fibroblasts. Critical role of the AT1 receptor subtype. Circ Res. 1993;73:413–23.

    CAS  PubMed  Google Scholar 

  142. Lakó-Futó Z, Szokodi I, Sármán B, et al. Evidence for a functional role of angiotensin II type 2 receptor in the cardiac hypertrophic process in vivo in the rat heart. Circulation. 2003;108:2414–22.

    PubMed  Google Scholar 

  143. Regitz-Zagrosek V, Friedel N, Heymann A, et al. Regulation, chamber localization, and subtype distribution of angiotensin II receptors in human hearts. Circulation. 1995;91:1461–71.

    CAS  PubMed  Google Scholar 

  144. Booz GW, Baker KM. Role of type 1 and type 2 angiotensin receptors in angiotensin II–induced cardiomyocyte hypertrophy. Hypertension. 1996;28:635–40.

    CAS  PubMed  Google Scholar 

  145. Bartunek J, Weinberg EO, Tajima M, Rohrbach S, Lorell BH. Angiotensin II type 2 receptor blockade amplifies the early signals of cardiac growth response to angiotensin II in hypertrophied hearts. Circulation. 1999;99:22–5.

    CAS  PubMed  Google Scholar 

  146. Senbonmatsu T, Ichihara S, Price Jr E, Gaffney FA, Inagami T. Evidence for angiotensin II type 2 receptor-mediated cardiac myocyte enlargement during in vivo pressure overload. J Clin Invest. 2000;106:R25–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  147. Peterson RC, Dunlap ME. Angiotensin II receptor blockers in the treatment of heart failure. Congest Heart Fail Greenwich Conn. 2002;8:246–50, 256.

    CAS  Google Scholar 

  148. Araujo AQ, Arteaga E, Ianni BM, Buck PC, Rabello R, Mady C. Effect of Losartan on left ventricular diastolic function in patients with nonobstructive hypertrophic cardiomyopathy. Am J Cardiol. 2005;96:1563–7.

    CAS  PubMed  Google Scholar 

  149. Yamazaki T, Suzuki J-I, Shimamoto R, et al. A new therapeutic strategy for hypertrophic nonobstructive cardiomyopathy in humans. A randomized and prospective study with an Angiotensin II receptor blocker. Int Heart J. 2007;48:715–24.

    PubMed  Google Scholar 

  150. Penicka M, Gregor P, Kerekes R, et al. The effects of candesartan on left ventricular hypertrophy and function in nonobstructive hypertrophic cardiomyopathy: a pilot, randomized study. J Mol Diagn JMD. 2009;11:35–41.

    CAS  Google Scholar 

  151. Lim DS, Lutucuta S, Bachireddy P, et al. Angiotensin II blockade reverses myocardial fibrosis in a transgenic mouse model of human hypertrophic cardiomyopathy. Circulation. 2001;103:789–91.

    PubMed Central  CAS  PubMed  Google Scholar 

  152. Maron BJ, Spirito P, Shen W-K, et al. Implantable cardioverter-defibrillators and prevention of sudden cardiac death in hypertrophic cardiomyopathy. JAMA J Am Med Assoc. 2007;298:405–12.

    CAS  Google Scholar 

  153. Maron MS, Kalsmith BM, Udelson JE, Li W, DeNofrio D. Survival after cardiac transplantation in patients with hypertrophic cardiomyopathy. Circ Heart Fail. 2010;3:574–9.

    PubMed  Google Scholar 

  154. Roberts WC. Fifty years of hypertrophic cardiomyopathy. Am J Cardiol. 2009;103:431–4.

    PubMed  Google Scholar 

  155. Kofflard MJ, Michels M, Krams R. et al. Coronary flow reserve in hypertrophic cardiomyopathy: relation with microvascular dysfunction and pathophysiological characteristics. Neth Heart J. 2007;15(6):209–15.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Siegel MD, FACC .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Beigel, R., Siegel, R.J., Rader, F. (2015). Cardiac Hypertrophy and Hypertrophic Cardiomyopathy: Introduction and Management. In: Jagadeesh, G., Balakumar, P., Maung-U, K. (eds) Pathophysiology and Pharmacotherapy of Cardiovascular Disease. Adis, Cham. https://doi.org/10.1007/978-3-319-15961-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15961-4_16

  • Publisher Name: Adis, Cham

  • Print ISBN: 978-3-319-15960-7

  • Online ISBN: 978-3-319-15961-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics