Skip to main content

Power System Dynamic Scheduling with High Integration of Renewable Sources

  • Chapter
Integrated Systems: Innovations and Applications

Abstract

In this paper, we present a model predictive control (MPC) based method for dynamic economic power scheduling in power grids. The proposed method is first applied to the power systems with relatively low penetration of renewable generation sources. The proposed MPC-based optimization method is then extended to the case, where a high penetration of renewable sources is expected. In the latter case, instead of considering power generated from renewable sources as a negative load (non-dispatchable), the system operator (SO) takes these sources into account as dispatchable in solving the scheduling problem. Various constraints pertinent to power systems including transmission congestion and generators’ capacity are also considered in the optimization process. Consequently, we will show that the use of storage devices will be an effective way to reduce the cost of generation in the future generation of power systems. The effectiveness of the proposed power scheduling methods will be demonstrated using an IEEE 14-bus system combined with the California ISO data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bechert, T.E., Kwatny, H.G.: On the optimal dynamic dispatch of real power. IEEE Transactions on Power Apparatus and Systems (3), 889–898 (1972)

    Google Scholar 

  2. Wang, C., Shahidehpour, S.: Optimal generation scheduling with ramping costs. In: Proc. IEEE Power Industry Computer Application Conference, pp. 11–17 (1993)

    Google Scholar 

  3. Kirschen, D., Strbac, G., Ebrary, I.: Fundamentals of power system economics. Wiley Online Library (2004)

    Google Scholar 

  4. Ross, D.W., Kim, S.: Dynamic economic dispatch of generation. IEEE Transactions on Power Apparatus and Systems (6), 2060–2068 (1980)

    Google Scholar 

  5. Wood, W.: Spinning reserve constrained static and dynamic economic dispatch. IEEE Transactions on Power Apparatus and Systems (2), 381–388 (1982)

    Google Scholar 

  6. Xia, X., Elaiw, A.: Optimal dynamic economic dispatch of generation: A review. Electric Power Systems Research 80(8), 975–986 (2010)

    Article  Google Scholar 

  7. Granelli, G., Marannino, P., Montagna, M., Silvestri, A.: Fast and efficient gradient projection algorithm for dynamic generation dispatching. In: IEE Proceedings Generation, Transmission and Distribution C, vol. 136, pp. 295–302 (1989)

    Google Scholar 

  8. Hindi, K.S., Ghani, M.A.: Dynamic economic dispatch for large scale power systems: a Lagrangian relaxation approach. International Journal of Electrical Power & Energy Systems 13(1), 51–56 (1991)

    Article  Google Scholar 

  9. Xia, X., Zhang, J., Elaiw, A.: An application of model predictive control to the dynamic economic dispatch of power generation. Control Engineering Practice (2011)

    Google Scholar 

  10. National laboratory of the U.S. Department of Energy, O.o.E.E., Energy, R. Wind energy update (October 2011)

    Google Scholar 

  11. Ahn, S.J., Moon, S.I.: Economic scheduling of distributed generators in a microgrid considering various constraints. In: Proc. IEEE Power & Energy Society General Meeting, 2009, pp. 1–6 (2009)

    Google Scholar 

  12. Namerikawa, T., Hatanaka, T., Fujita, M.: On predictive control for systems with information structured constraints. SICE Journal of Control, Measurement, and System Integration 1(1), 1–8 (2010)

    Google Scholar 

  13. Hooshmand, A., Poursaeidi, M., Mohammadpour, J., Malki, H.: Stochastic model predictive control method for microgrid management. In: Proc. IEEE Conference on Innovative Smart Grid Technologies (2012)

    Google Scholar 

  14. Lindenberg, S.: 20% Wind Energy By 2030: Increasing Wind Energy’s Contribution to US Electricity Supply. DIANE Publishing (2009)

    Google Scholar 

  15. Commission, C.P.U.: Order instituting rulemaking regarding implementation and administration of the renewables portfolio standard program (2008)

    Google Scholar 

  16. Ilic, M., Xie, L., Joo, J.Y.: Efficient coordination of wind power and price-responsive demand- part I: Theoretical foundations. IEEE Transactions on Power Systems (99), 1(2010)

    Google Scholar 

  17. Garcia, C.E., Prett, D.M., Morari, M.: Model predictive control: Theory and practice–a survey. Automatica 25(3), 335–348 (1989)

    Article  MATH  Google Scholar 

  18. Lee, J., Yu, Z.: Worst-case formulations of model predictive control for systems with bounded parameters. Automatica 33(5), 763–781 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  19. Lee, J.H., Morari, M., Garcia, C.E.: State-space interpretation of model predictive control. Automatica 30(4), 707–717 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  20. Findeisen, R., Imsland, L., Allgower, F., Foss, B.A.: State and output feedback nonlinear model predictive control: An overview. European Journal of Control 9(2-3), 190–206 (2003)

    Article  MATH  Google Scholar 

  21. Nicolao, G., Magni, L., Scattolini, R.: Stability and robustness of nonlinear receding horizon control. Nonlinear model predictive control, 3–22 (2000)

    Google Scholar 

  22. Otomega, B., Marinakis, A., Glavic, M., Van Cutsem, T.: Model predictive control to alleviate thermal overloads. IEEE Transactions on Power Systems 22(3), 1384–1385 (2007)

    Article  Google Scholar 

  23. Xie, L., Ilic, M.: Model predictive economic/environmental dispatch of power systems with intermittent resources. In: Proc. IEEE Power & Energy Society General Meeting, pp. 1–6 (2009)

    Google Scholar 

  24. http://oasis.caiso.com/mrtu-oasis/?doframe=true&serverurl=http :

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Hooshmand .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hooshmand, A., Mohammadpour, J., Malk, H., Danesh, H. (2015). Power System Dynamic Scheduling with High Integration of Renewable Sources. In: Fathi, M. (eds) Integrated Systems: Innovations and Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-15898-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15898-3_14

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15897-6

  • Online ISBN: 978-3-319-15898-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics