Skip to main content

Therapeutic Importance of Curcumin in Neurological Disorders Other Than Alzheimer Disease

  • Chapter
  • First Online:
Therapeutic Potentials of Curcumin for Alzheimer Disease

Abstract

Curcumin mediates its neuroprotective effects not only in neurotraumatic disorders (stroke, spinal cord injury, traumatic brain injury, and epilepsy), but also in Parkinson disease, Huntington disease, and prion diseases. In addition, curcumin also promote its beneficial effects in neuropsychological disorders (depression, biopolar disorders, and tardive dyskinesia). The mechanism associated with neuroprotective action of curcumin is not fully understood. However, it is becoming increasingly evident that anti-inflammatory and antioxidant properties of curcumin may be responsible for neuroprotective effects. At the molecular level, neuroprotective effects of curcumin are accompanied by downregulating activities of phospholipases, lipooxygenase, cyclooxygenase-2, which lead to low levels of leukotrienes, thromboxanes, prostaglandins. In addition, curcumin also inhibits the expression of TNF-α, IL-12, MCP-1, and interferon-inducible protein. In addition, curcumin also modulates various neurotransmitter levels in the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamson J, Beswick A, Ebrahim S (2004) Stroke and disability. J Stroke Cerebrovasc Dis 13:171–177

    Article  PubMed  Google Scholar 

  • Agrawal R, Tyagi E, Shukla R, Nath C (2011) Insulin receptor signaling in rat hippocampus: a study in STZ (ICV) induced memory deficit model. Eur Neuropsychopharmacol 21:261–273

    Article  CAS  PubMed  Google Scholar 

  • Ahmad B, Lapidus LJ (2012) Curcumin prevents aggregation in α-synuclein by increasing reconfiguration rate. J Biol Chem 287:9193–9199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahsan N, Mishra S, Jain MK, Surolia A, Gupta S (2015) Curcumin pyrazole and its derivative (N-(3-Nitrophenylpyrazole) curcumin inhibit aggregation, disrupt fibrils and modulate toxicity of wild type and mutant α-synuclein. Sci Rep 5:9862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amor S, Peferoen LA, Vogel DY, Breur M, van der Valk P, Baker D, van Noort JM (2014) Inflammation in neurodegenerative diseases—an update. Immunology 142:151–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderica-Romero AC, Gonzalez-Herrera IG, Santamaria A, Pedraza-Chaverri J (2013) Cullin 3 as a novel target in diverse pathologies. Redox Biol 1:366–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andreoletti O, Levavasseur E, Uro-Coste E, Tabouret G, Sarradin P, Delisle MB, Berthon P, Salvayre R, Schelcher F, Negre-Salvayre A (2002) Astrocytes accumulate 4-hydroxynonenal adducts in murine scrapie and human Creutzfeldt-Jakob disease. Neurobiol Dis 11:386–393

    Article  CAS  PubMed  Google Scholar 

  • Arora V, Kuhad A, Tiwari V, Chopra K (2011) Curcumin ameliorates reserpine induced pain-depression dyad: behavioural, biochemical, neurochemical and molecular evidences. Psychoneuroendocrinology 36:1570–1581

    Article  CAS  PubMed  Google Scholar 

  • Banasr M, Hery M, Printemps R, Daszuta A (2004) Serotonin-induced increases in adult cell proliferation and neurogenesis are mediated through different and common 5-HT receptor subtypes in the dentate gyrus and the subventricular zone. Neuropsychopharmacology 29:450–460

    Article  CAS  PubMed  Google Scholar 

  • Bates G (2003) Huntingtin aggregation and toxicity in Huntington’s disease. Lancet 361:1642–1644

    Article  CAS  PubMed  Google Scholar 

  • Beckman JS, Estévez AG, Crow JP, Barbeito L (2001) Superoxide dismutase and the death of motoneurons in ALS. Trends Neurosci 24(11 Suppl):S15–S20

    Article  CAS  PubMed  Google Scholar 

  • Benes FM (2000) Emerging principles of altered neural circuitry in schizophrenia. Brain Res Brain Res Rev 31:251–269

    Article  CAS  PubMed  Google Scholar 

  • Beraldo FH, Arantes CP, Santos TG, Machado CF, Roffe M, Hajj GN, Lee KS, Magalhães AC, Caetano FA, Mancini GL, Lopes MH, Américo TA, Magdesian MH, Ferguson SS, Linden R, Prado MA, Martins VR (2011) Metabotropic glutamate receptors transduce signals for neurite outgrowth after binding of the prion protein to laminin γ1 chain. FASEB J 25:265–279

    Article  CAS  PubMed  Google Scholar 

  • Bergman J, Miodownik C, Bersudsky Y, Sokolik S, Lerner PP, Kreinin A, Polakiewicz J, Lerner V (2013) Curcumin as an add-on to antidepressive treatment: a randomized, double-blind, placebo-controlled, pilot clinical study. Clin Neuropharmacol 36:73–77

    Article  CAS  PubMed  Google Scholar 

  • Berk M, Conus P, Kapczinski F, Andreazza AC, Yücel M, Wood SJ, Pantelis C, Malhi GS, Dodd S, Bechdolf A, Amminger GP, Hickie IB, McGorry PD (2010) From neuroprogression to neuroprotection: implications for clinical care. Med J Aust 193:S36–S40

    PubMed  Google Scholar 

  • Bhutani MK, Bishnoi M, Kulkarni SK (2009) Anti-depressant like effect of curcumin and its combination with piperine in unpredictable chronic stress-induced behavioral, biochemical and neurochemical changes. Pharmacol Biochem Behav 92:39–43

    Article  CAS  PubMed  Google Scholar 

  • Bisaglia M, Tessari I, Mammi S, Bubacco L (2009) Interaction between a-synuclein and metal ions still looking for a role in the pathogenesis of Parkinson’s disease. Neuromolecular Med 11:239–251

    Article  CAS  PubMed  Google Scholar 

  • Blitzer RD, Iyengar R, Landau EM (2005) Postsynaptic signaling networks: cellular cogwheels underlying long-term plasticity. Biol Psychiatry 57:113–119

    Article  CAS  PubMed  Google Scholar 

  • Blümcke I, Beck H, Lie AA, Wiestler OD (1999) Molecular neuropathology of human mesial temporal lobe epilepsy. Epilepsy Res 36:205–223

    Article  PubMed  Google Scholar 

  • Boison D, Sandau US, Ruskin DN, Kawamura M Jr, Masino SA (2013) Homeostatic control of brain function – new approaches to understand epileptogenesis. Front Cell Neurosci 7:109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonilla E (2000) Huntington disease. A review. Invest Clin 41:117–141

    CAS  PubMed  Google Scholar 

  • Bower JH, Maraganore DM, Peterson BJ, McDonnell SK, Ahlskog JE, Rocca WA (2003) Head trauma preceding PD: a case-control study. Neurology 60:1610–1615

    Article  CAS  PubMed  Google Scholar 

  • Bradley MA, Markesbery WR, Lovell MA (2010) Increased levels of 4-hydroxynonenal and acrolein in the brain in preclinical Alzheimer disease. Free Radic Biol Med 48:1570–1576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bramham CR, Messaoudi E (2005) BDNF function in adult synaptic plasticity: the synaptic consolidation hypothesis. Prog Neurobiol 76:99–125

    Article  CAS  PubMed  Google Scholar 

  • Bright JJ (2007) Curcumin and autoimmune disease. Adv Exp Med Biol 595:425–451

    Article  PubMed  Google Scholar 

  • Bruce JH, Norenberg MD, Kraydieh S, Puckett W, Marcillo A, Dietrich D (2000) Schwannosis: role of gliosis and proteoglycan in human spinal cord injury. J Neurotrauma 17:781–788

    Article  CAS  PubMed  Google Scholar 

  • Bryan HK, Olayanju A, Goldring CE, Park BK (2013) The Nrf2 cell defence pathway: Keap1-dependent and-independent mechanisms of regulation. Biochem Pharmacol 85:705–717

    Article  CAS  PubMed  Google Scholar 

  • Casley CS, Lakics V, Lee H-G, Broad LM, Day TA, Cluett T, Smith MA, O’Neill MJ, Kingston AE (2009) Up-regulation of astrocyte metabotropic glutamate receptor 5 by amyloid-beta peptide. Brain Res 1260:65–75

    Article  CAS  PubMed  Google Scholar 

  • Caughey B, Raymond LD, Raymond GJ, Maxson L, Silveira J, Baron GS (2003) Inhibition of protease-resistant prion protein accumulation in vitro by curcumin. J Virol 77:5499–5502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cemil B, Topuz K, Demircan MN, Kurt G, Tun K, Kutlay M, Ipcioglu O, Kucukodaci Z (2010) Curcumin improves early functional results after experimental spinal cord injury. Acta Neurochir (Wien) 152:1583–1590

    Article  Google Scholar 

  • Cepeda C, Ariano MA, Calvert CR, Flores-Hernandez J, Chandler SH, Leavitt BR, Hayden MR, Levine MS (2001) NMDA receptor function in mouse models of Huntington disease. J Neurosci Res 66:525–539

    Article  CAS  PubMed  Google Scholar 

  • Chauhan NB (2014) Chronic neurodegenerative consequences of traumatic brain injury. Restor Neurol Neurosci 32:337–365

    CAS  PubMed  Google Scholar 

  • Chen X, de Silva HA, Pettenati MJ, Rao PN, St George-Hyslop P, Roses AD Xia Y, Horsburgh K, Ueda K, Saitoh T (1995) The human NACP/alpha-synuclein gene: chromosome assignment to 4q21.3–q22 and TaqI RFLP analysis. Genomics 26: 425–427

    Google Scholar 

  • Chen J, Tang XQ, Zhi JL, Cui Y, Yu HM, Tang EH, Sun SN, Feng JQ, Chen PX (2006) Curcumin protects PC12 cells against 1-methyl-4-phenylpyridinium ion-induced apoptosis by Bcl-2-mitochondria-ROS-iNOS pathway. Apoptosis 11:943–953

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Richard M, Sandler DP, Umbach DM, Kamel F (2007) Head injury and amyotrophic lateral sclerosis. Am J Epidemiol 166:810–816

    Article  PubMed  PubMed Central  Google Scholar 

  • Choudhary KM, Mishra A, Poroikov VV, Goel RK (2013) Ameliorative effect of curcumin on seizure severity, depression like behavior, learning and memory deficit in post-pentylenetetrazole-kindled mice. Eur J Pharmacol 704:33–40

    Article  CAS  PubMed  Google Scholar 

  • Collinge J, Whittington MA, Sidle KC, Smith CJ, Palmer MS, Clarke AR, Jefferys JG (1994) Prion protein is necessary for normal synaptic function. Nature 370:295–297

    Article  CAS  PubMed  Google Scholar 

  • Cowan CM, Raymond LA (2006) Selective neuronal degeneration in Huntington’s disease. Curr Top Dev Biol 75:25–71

    Article  CAS  PubMed  Google Scholar 

  • Criado JR, Sanchez-Alavez M, Conti B, Giacchino JL, Wills DN, Henriksen SJ, Race R, Manson JC, Chesebro B, Oldstone MB (2005) Mice devoid of prion protein have cognitive deficits that are rescued by reconstitution of PrP in neurons. Neurobiol Dis 19:255–265

    Google Scholar 

  • Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39:889–909

    Article  CAS  PubMed  Google Scholar 

  • David Y, Cacheaux LP, Ivens S, Lapilover E, Heinemann U, Kaufer D, Friedman A (2009) Astrocytic dysfunction in epileptogenesis: consequence of altered potassium and glutamate homeostasis? J Neurosci 29:10588–10599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davidson RJ, Pizzagalli D, Nitschike JB, Putnam K (2002) Depression: perspectives from affective neuroscience. Annu Rev Psychol 53:545–574

    Article  PubMed  Google Scholar 

  • Deleidi M, Jäggle M, Rubino G (2015) Immune aging, dysmetabolism, and inflammation in neurological diseases. Front Neurosci 9:172

    Article  PubMed  PubMed Central  Google Scholar 

  • Devinsky O, Vezzani A, Najjar S, De Lanerolle NC, Rogawski MA (2013) Glia and epilepsy: excitability and inflammation. Trends Neurosci 36:174–184

    Article  CAS  PubMed  Google Scholar 

  • Dichter MA (2006) Models of epileptogenesis in adult animals available for antiepileptogenesis drug screening. Epilepsy Res 68:31–35

    Article  PubMed  Google Scholar 

  • Donkin JJ, Vink R (2010) Mechanisms of cerebral edema in traumatic brain injury: therapeutic developments. Curr Opin Neurol 23:293–299

    Article  CAS  PubMed  Google Scholar 

  • Dornmair K, Goebels N, Weltzien HU, Wekerle H, Hohlfeld R (2003) T-cell-mediated autoimmunity: novel techniques to characterize autoreactive T-cell receptors. Am J Pathol 163:1215–1226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fagiolini A, Chengappa KN, Soreca I, Chang J (2008) Bipolar disorder and the metabolic syndrome: causal factors, psychiatric outcomes and economic burden. CNS Drugs 22:655–669

    Article  CAS  PubMed  Google Scholar 

  • Faideau M, Kim J, Cormier K, Gilmore R, Welch M, Auregan G, Dufour N, Guillermier M, Brouillet E, Hantraye P, Déglon N, Ferrante RJ, Bonvento G (2010) In vivo expression of polyglutamine-expanded huntingtin by mouse striatal astrocytes impairs glutamate transport: a correlation with Huntington’s disease subjects. Hum Mol Genet 19:3053–3067

    Google Scholar 

  • Farooqui AA (2010) Neurochemical aspects of neurotraumatic and neurodegenerative diseases. Springer, New York

    Book  Google Scholar 

  • Farooqui AA (2011) Lipid mediators and their metabolism in the brain. Springer, New York

    Book  Google Scholar 

  • Farooqui AA (2012) Phytochemicals, signal transduction, and neurological disorders. Springer, New York

    Book  Google Scholar 

  • Farooqui AA (2013) Metabolic syndrome: an important risk factor for stroke, Alzheimer disease, and depression. Springer, New York

    Book  Google Scholar 

  • Farooqui AA (2015) High calorie diet and the human brain: metabolic consequences of long-term consumption. Springer, Switzerland

    Google Scholar 

  • Farooqui T, Farooqui AA (2009) Aging: an important factor for the pathogenesis of neurodegenerative diseases. Mech Ageing Dev 130:203–215

    Article  CAS  PubMed  Google Scholar 

  • Farooqui T, Farooqui AA (2011) Lipid-mediated oxidative stress and inflammation in the pathogenesis of Parkinson’s disease. Parkinsons Dis 2011:247467

    PubMed  PubMed Central  Google Scholar 

  • Farooqui AA, Horrocks LA (2007) Glycerophospholipids in the brain: phospholipases A2 in neurological disorders. Springer, New York

    Book  Google Scholar 

  • Farooqui AA, Horrocks LA, Farooqui T (2007) Modulation of inflammation in brain: a matter of fat. J Neurochem 101:577–599

    Article  CAS  PubMed  Google Scholar 

  • Farooqui AA, Ong WY, Horrocks LA (2008) Neurochemical aspects of excitotoxicity. Springer, New York

    Google Scholar 

  • Fehlings MG, Tighe A (2008) Spinal cord injury: the promise of translational research. Neurosurg Focus 25:E1

    Article  PubMed  Google Scholar 

  • Filbin MT (2003) Myelin-associated inhibitors of axonal regeneration in the adult mammalian CNS. Nat Rev Neurosci 4:703–713

    Article  CAS  PubMed  Google Scholar 

  • Fleminger S, Oliver DL, Lovestone S, Rabe-Hesketh S, Giora A (2003) Head injury as a risk factor for Alzheimer’s disease: the evidence 10 years on; a partial replication. J Neurol Neurosurg Psychiatry 74:857–862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fouad K, Tse A (2008) Adaptive changes in the injured spinal cord and their role in promoting functional recovery. Neurol Res 30:17–27

    Article  CAS  PubMed  Google Scholar 

  • Fournier JG, Escaig-Haye F, Grigoriev V (2000) Ultrastructural localization of prion proteins: physiological and pathological implications. Microsc Res Tech 50:76–88

    Article  CAS  PubMed  Google Scholar 

  • Furukawa T, Matsui N, Fujita K, Miyashiro A, Nodera H, Izumi Y, Shimizu F, Miyamoto K, Takahashi Y, Kanda T, Kusunoki S, Kaji R (2014) Increased proinflammatory cytokines in sera of patients with multifocal motor neuropathy. J Neurol Sci 346:75–79

    Article  CAS  PubMed  Google Scholar 

  • Gadad BS, Subramanya PK, Pullabhatla S, Shantharam IS, Rao KS (2012) Curcumin-glucoside, a novel synthetic derivative of curcumin, inhibits α-synuclein oligomer formation: relevance to Parkinson’s disease. Curr Pharm Des 18:76–84

    Article  CAS  PubMed  Google Scholar 

  • Gałecki P, Talarowska M, Anderson G, Berk M, Maes M (2015) Mechanisms underlying neurocognitive dysfunctions in recurrent major depression. Med Sci Monit 21:1535–1547

    Article  PubMed  PubMed Central  Google Scholar 

  • Garcia-Alloza M, Borrelli LA, Rozkalne A, Hyman BT, Bacskai BJ (2007) Curcumin labels amyloid pathology in vivo, disrupts existing plaques, and partially restores distorted neurites in an Alzheimer mouse model. J Neurochem 102:1095–1104

    Article  CAS  PubMed  Google Scholar 

  • Gautam SC, Gao X, Dutchavsky S (2007) Immunomodulation by curcumin. Adv Exp Med Biol 595:321–341

    Article  PubMed  Google Scholar 

  • Gazal M, Valente MR, Acosta BA, Kaufmann FN, Braganhol E, Lencina CL, Stefanello FM, Ghisleni G, Kaster MP (2014) Neuroprotective and antioxidant effects of curcumin in a ketamine-induced model of mania in rats. Eur J Pharmacol 724:132–139

    Article  CAS  PubMed  Google Scholar 

  • Gil JM, Rego AC (2008) Mechanisms of neurodegeneration in Huntington’s disease. Eur J Neurosci 27:2803–2820

    Article  PubMed  Google Scholar 

  • Glabinski AR, Tani M, Tuohy VK, Ransohoff RM (1997) Murine experimental autoimmune encephalomyelitis: a model of immune-mediated inflammation and multiple sclerosis. Methods Enzymol 288:182–190

    Article  CAS  PubMed  Google Scholar 

  • Goel A, Kunnumakkara AB, Aggarwal BB (2008) Curcumin as “Curecumin”: from kitchen to clinic. Biochem Pharmacol 75:787–809

    Article  CAS  PubMed  Google Scholar 

  • Gomez-Pinilla F (2011) The combined effects of exercise and foods in preventing neurological and cognitive disorders. Prev Med 52(Suppl 1):S75–S80

    Article  PubMed  PubMed Central  Google Scholar 

  • Gomez-Pinilla F, Nguyen TT (2012) Natural mood foods: the actions of polyphenols against psychiatric and cognitive disorders. Nutr Neurosci 15:127–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graeber MB, Moran LB (2002) Mechanisms of cell death in neurodegenerative diseases: fashion, fiction, and facts. Brain Pathol 12:385–390

    Article  PubMed  Google Scholar 

  • Greco A, Minghetti L, Levi G (2000) Isoprostanes, novel markers of oxidative injury, help understanding the pathogenesis of neurodegenerative diseases. Neurochem Res 25:1357–1364

    Article  CAS  PubMed  Google Scholar 

  • Griesbach GS, Hovda DA, Gomez-Pinilla F (2009) Exercise-induced improvement in cognitive performance after traumatic brain injury in rats is dependent on BDNF activation. Brain Res 1288:105–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grossman A, Zeiler B, Sapirstein V (2003) Prion protein interactions with nucleic acid: possible models for prion disease and prion function. Neurochem Res 28:955–963

    Article  CAS  PubMed  Google Scholar 

  • Gunther EC, Strittmatter SM (2010) Beta-amyloid oligomers and cellular prion protein in Alzheimer’s disease. J Mol Med (Berl) 88:331–338

    Google Scholar 

  • Gupta SC, Prasad S, Kim JH, Patchva S, Webb LJ, Priyadarsini IK, Aggarwal BB (2011) Multitargeting by curcumin as revealed by molecular interaction studies. Nat Prod Rep 28:1937–1955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hafner-Bratkovic I, Gaspersic J, Smid LM, Bresjanac M, Jerala R (2008) Curcumin binds to the alpha-helical intermediate and to the amyloid form of prion protein – a new mechanism for the inhibition of PrP(Sc) accumulation. J Neurochem 104:1553–1564

    Article  CAS  PubMed  Google Scholar 

  • Hamilton A, Zamponi GW, Ferguson SS (2015) Glutamate receptors function as scaffolds for the regulation of β-amyloid and cellular prion protein signaling complexes. Mol Brain 8:18

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Harrison PJ (1999) Neurochemical alterations in schizophrenia affecting the putative receptor targets of atypical antipsychotics. Focus on dopamine (D1, D3, D4) and 5-HT2a receptors. Brain 122:593–624

    Article  PubMed  Google Scholar 

  • Heck N, Garwood J, Loeffler JP, Larmet Y, Faissner A (2004) Differential upregulation of extracellular matrix molecules associated with the appearance of granule cell dispersion and mossy fiber sprouting during epileptogenesis in a murine model of temporal lobe epilepsy. Neuroscience 129:309–324

    Article  CAS  PubMed  Google Scholar 

  • Hegde ML, Hegde PM, Rao KS, Mitra S (2011) Oxidative genome damage and its repair in neurodegenerative diseases: function of transition metals as a double-edged sword. J Alzheimers Dis 24(Suppl 2):183–198

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heikkila RE, Sonsalla PK (1992) The MTPT-treated mouse as a model of Parkinsonism: how good is it? Neurochem Int 20(Suppl 1):299S–303S

    Google Scholar 

  • Hickey MA, Kosmalska A, Enayati J, Cohen R, Zeitlin S, Levine MS, Chesselet MF (2008) Extensive early motor and non-motor behavioral deficits are followed by striatal neuronal loss in knock-in Huntington’s disease mice. Neuroscience 157:280–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hickey MA, Zhu C, Medvedeva V, Lerner RP, Patassini S, Franich NR, Maiti P, Frautschy SA, Zeitlin S, Levine MS, Chesselet MF (2012) Improvement of neuropathology and transcriptional deficits in CAG 140 knock-in mice supports a beneficial effect of dietary curcumin in Huntington’s disease. Mol Neurodegener 7:12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hipp MS, Patel CN, Bersuker K, Riley BE, Kaiser SE, Shaler TA, Brandeis M, Kopito RR (2012) Indirect inhibition of 26S proteasome activity in a cellular model of Huntington’s disease. J Cell Biol 196:573–587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong HS, Rana S, Barrigan L, Shi A, Zhang Y, Zhou F, Jin LW, Hua DH (2009) Inhibition of Alzheimer’s amyloid toxicity with a tricyclic pyrone molecule in vitro and in vivo. J Neurochem 108:1097–1108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou ST, MacManus JP (2002) Molecular mechanisms of cerebral ischemia-induced neuronal death. Int Rev Cytol 221:93–148

    Article  CAS  PubMed  Google Scholar 

  • Hsu LJ, Sagara Y, Arroyo A, Rockenstein E, Sisk A, Mallory M, Wong J, Takenouchi T, Hashimoto M, Masliah E (2000) Alpha-synuclein promotes mitochondrial deficit and oxidative stress. Am J Pathol 157:401–410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Irvine GB, El Agnaf OM, Shankar GM, Walsh DM (2008) Protein aggregation in the brain: the molecular basis for Alzheimer’s and Parkinson’s diseases. Mol Med 14:451–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Italiani P, Carlesi C, Giungato P, Puxeddu I, Borroni B, Bossù P, Migliorini P, Siciliano G, Boraschi D (2014) Evaluating the levels of interleukin-1 family cytokines in sporadic amyotrophic lateral sclerosis. J Neuroinflammation 11:94

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ito H, Kawashima R, Awata S, Ono S, Sato K, Goto R, Koyama M, Sato M, Fukuda H (1996) Hypoperfusion in the limbic system and prefrontal cortex in depression: SPECT with anatomic standardization technique. J Nucl Med 37:410–414

    CAS  PubMed  Google Scholar 

  • Iwai A, Masliah E, Yoshimoto M, Ge N, Flanagan L, de Silva HA, Kittel A, Saitoh T (1995) The precursor protein of non-A beta component of Alzheimer’s disease amyloid is a presynaptic protein of the central nervous system. Neuron 14:467–475

    Article  CAS  PubMed  Google Scholar 

  • Jankovic J (2008) Parkinson’s disease: clinical features and diagnosis. J Neurol Neurosurg Psychitry 79:368–376

    Article  CAS  Google Scholar 

  • Jayaraj RL, Tamilselvam K, Manivasagam T, Elangovan N (2013) Neuroprotective effect of CNB-001, a novel pyrazole derivative of curcumin on biochemical and apoptotic markers against rotenone-induced SK-N-SH cellular model of Parkinson’s disease. J Mol Neurosci 51:863–870

    Article  CAS  PubMed  Google Scholar 

  • Jayaraj RL, Elangovan N, Manigandan K, Singh S, Shukla S (2014) CNB-001 a novel curcumin derivative, guards dopamine neurons in MPTP model of Parkinson’s disease. Biomed Res Int 2014:236182

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jellinger KA (2009) Recent advances in our understanding of neurodegeneration. J Neural Transm 116:1111–1162

    Article  CAS  PubMed  Google Scholar 

  • Jiang J, Wang W, Sun Y, Hu M, Li F, Zhu DY (2007) Neuroprotective effect of curcumin on focal cerebral ischemic rats by preventing blood-brain barrier damage. Eur J Pharmacol 561:54–62

    Article  CAS  PubMed  Google Scholar 

  • Kalonia H, Kumar A (2011) Suppressing inflammatory cascade by cyclo-oxygenase inhibitors attenuates quinolinic acid induced Huntington’s disease-like alterations in rats. Life Sci 88:784–791

    Article  CAS  PubMed  Google Scholar 

  • Kanakasabai S, Casalini E, Walline CC, Mo C, Chearwae W, Bright JJ (2012) Differential regulation of CD4(+) T helper cell responses by curcumin in experimental autoimmune encephalomyelitis. J Nutr Biochem 23:1498–1507

    Article  CAS  PubMed  Google Scholar 

  • Kato K, Ito H, Kamei K, Iwamoto I (1998) Stimulation of the stress-induced expression of stress proteins by curcumin in cultured cells and in rat tissues in vivo. Cell Stress Chaperones 3:152–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaur H, Bal A, Sandhir R (2014) Curcumin supplementation improves mitochondrial and behavioral deficits in experimental model of chronic epilepsy. Pharmacol Biochem Behav 125:55–64

    Article  CAS  PubMed  Google Scholar 

  • Kessels HW, Nguyen LN, Nabavi S, Malinow R (2010) The prion protein as a receptor for amyloid-beta. Nature 466:E3–E4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ketter TA (2010) Diagnostic features, prevalence, and impact of bipolar disorder. J Clin Psychiatry 71, e14

    Article  PubMed  Google Scholar 

  • Khosravani H, Zhang Y, Tsutsui S, Hameed S, Altier C, Hamid J, Chen L, Villemaire M, Ali Z, Jirik FR, Zamponi GW (2008) Prion protein attenuates excitotoxicity by inhibiting NMDA receptors. J Cell Biol 181(3):551–565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kidd PM (2005) Neurodegeneration from mitochondrial insufficiency: nutrients, stem cells, growth factors, and prospects for brain rebuilding using integrative management. Altern Med Rev 10:268–293

    PubMed  Google Scholar 

  • Kim GY, Kim KH, Lee SH, Yoon MS, Lee HJ, Moon DO (2005) Curcumin inhibits immunostimulatory function of dendritic cells: MAPKs and translocation of NF-B as potential targets. J Immunol 174:8116–8124

    Article  CAS  PubMed  Google Scholar 

  • Kim SJ, Son TG, Park HR, Park M, Kim M-S, Kim HS, Chung HY, Mattson MP, Lee J (2008) Curcumin stimulates proliferation of embryonic neural progenitor cells and neurogenesis in the adult hippocampus. J Biol Chem 283:14497–14505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim J-H, Park S-H, Nam S-W, Kwon H-J, Kim B-W, Kim W-J et al (2011) Curcumin stimulates proliferation, stemness acting signals and migration of 3T3-L1 preadipocytes. Int J Mol Med 28:429–435

    CAS  PubMed  Google Scholar 

  • Kimbrell TA, Ketter TA, George MS, Little JT, Benson BE, Willis MW, Herscovitch P, Post RM (2002) Regional cerebral glucose utilization in patients with a range of severities of unipolar depression. Biol Psychiatry 51:237–252

    Article  CAS  PubMed  Google Scholar 

  • Klussmann S, Martin-Villalba A (2005) Molecular targets in spinal cord injury. J Mol Med 83:657–671

    Article  CAS  PubMed  Google Scholar 

  • Kulkarni SK, Bhutani MK, Bishnoi M (2008) Antidepressant activity of curcumin: involvement of serotonin and dopamine system. Psychopharmacol (Berl) 201:435–442

    Article  CAS  Google Scholar 

  • Kulkarni S, Dhir A, Akula KK (2009) Potentials of curcumin as an antidepressant. ScientificWorldJournal 9:1233–1241

    Article  CAS  PubMed  Google Scholar 

  • Kumar P, Kalonia H, Kumar A (2011) Role of LOX/COX pathways in 3-nitropropionic acid-induced Huntington’s disease-like symptoms in rats: protective effect of licofelone. Br J Pharmacol 164:644–654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kupfer DJ, Frank E, Phillips ML (2012) Major depressive disorder: new clinical, neurobiological, and treatment perspectives. Lancet 379:1045–1055

    Article  PubMed  PubMed Central  Google Scholar 

  • Laurén J, Gimbel DA, Nygaard HB, Gilbert JW, Stephen M (2009) Cellular prion protein mediates impairment of synaptic plasticity by amyloid-B oligomers. Nature 457:1128–1132

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee HJ, Choi C, Lee SJ (2002) Membrane-bound α-synuclein has a high aggregation propensity and the ability to seed the aggregation of the cytosolic form. J Biol Chem 277:671–678

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Kosaras B, Del Signore SJ, Cormier K, McKee A, Ratan RR, Kowall NW, Ryu H (2011) Modulation of lipid peroxidation and mitochondrial function improves neuropathology in Huntington’s disease mice. Acta Neuropathol 121:487–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leonard B, Maes M (2012) Mechanistic explanations how cell-mediated immune activation, inflammation and oxidative and nitrosative stress pathways and their sequels and concomitants play a role in the pathophysiology of unipolar depression. Neurosci Biobehav Rev 36:764–785

    Article  CAS  PubMed  Google Scholar 

  • Li J, Zhu M, Rajamani S, Uversky VN, Fink AL (2004) Rifampicin inhibits alpha-synuclein fibrillation and disaggregates fibrils. Chem Biol 11:1513–1521

    Article  CAS  PubMed  Google Scholar 

  • Li YC, Wang FM, Pan Y, Qiang LQ, Cheng G, Zhang WY, Kong LD (2009) Antidepressant-like effects of curcumin on serotonergic receptor-coupled AC-cAMP pathway in chronic unpredictable mild stress of rats. Prog Neuropsychopharmacol Biol Psychiatry 33:435–449

    Article  CAS  PubMed  Google Scholar 

  • Liang D, Han G, Feng X, Sun J, Duan Y, Lei H (2012) Concerted perturbation observed in a hub network in Alzheimer’s disease. PLoS One 7, e40498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim GP, Chu T, Yang F, Beech W, Frautschy SA, Cole GM (2001) The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J Neurosci 21:8370–8377

    CAS  PubMed  Google Scholar 

  • Lin MS, Lee YH, Chiu WT, Hung KS (2011a) Curcumin provides neuroprotection after spinal cord injury. J Surg Res 166:280–289

    Article  CAS  PubMed  Google Scholar 

  • Lin MS, Sun YY, Chiu WT, Chang CY, Hung CC, Shie FS, Tsai SH, Lin JW, Hung KS, Lee YH (2011b) Curcumin attenuates the expression and secretion of RANTES following spinal cord injury in vivo and lipopolysaccharide-induced astrocyte reactivation in vitro. J Neurotrauma 28:1259–1269

    Article  PubMed  Google Scholar 

  • Linden R, Martins VR, Prado MA, Cammarota M, Izquierdo I, Brentani RR (2008) Physiology of the prion protein. Physiol Rev 88:673–728

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Dargusch R, Maher P, Schubert D (2008) A broadly neuroprotective derivative of curcumin. J Neurochem 105:1336–1345

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Yu Y, Li X, Ross CA, Smith WW (2011) Curcumin protects against A53T alpha-synuclein-induced toxicity in a PC12 inducible cell model for Parkinsonism. Pharmacol Res 63:439–444

    Article  PubMed  CAS  Google Scholar 

  • Lopes JP, Oliveira CR, Agostinho P (2007) Role of cyclin-dependent kinase 5 in the neurodegenerative process triggered by amyloid-beta and Prion peptides: implications for Alzheimer’s disease and Prion-related encephalopathies. Cell Mol Neurobiol 27:943–957

    Article  CAS  PubMed  Google Scholar 

  • Lopresti AL, Hood SD, Drummond PD (2012) Multiple antidepressant potential modes of action of curcumin: a review of its anti-inflammatory, monoaminergic, antioxidant, immune-modulating and neuroprotective effects. J Psychopharmacol 26:1512–1524

    Article  PubMed  Google Scholar 

  • Lopresti AL, Hood SD, Drummond PD (2013) A review of lifestyle factors that contribute to important pathways associated with major depression: diet, sleep and exercise. J Affect Disord 148:12–27

    Article  PubMed  Google Scholar 

  • Luscher B, Shen Q, Sahir N (2011) The GABAergic deficit hypothesis of major depressive disorder. Mol Psychiatry 16:383–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma QL, Yang F, Rosario ER, Ubeda OJ, Beech W, Gant DJ, Chen PP, Hudspeth B, Chen C, Zhao Y, Vinters HV, Frautschy SA, Cole GM (2009) β-Amyloid oligomers induce phosphorylation of tau and inactivation of insulin receptor substrate via c-Jun N-terminal kinase signaling: suppression by omega-3 fatty acids and curcumin. J Neurosci 29:9078–9089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maas AI, Stocchetti N, Bullock R (2008) Moderate and severe traumatic brain injury in adults. Lancet Neurol 7:728–741

    Article  PubMed  Google Scholar 

  • Maglio LE, Martins VR, Izquierdo I, Ramirez OA (2006) Role of cellular prion protein on LTP expression in aged mice. Brain Res 1097:11–18

    Article  CAS  PubMed  Google Scholar 

  • Mallucci GR, Ratté S, Asante EA, Linehan J, Gowland I, Jefferys JG, Collinge J (2002) Post-natal knockout of prion protein alters hippocampal CA1 properties, but does not result in neurodegeneration. EMBO J 21:202–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manea MM, Comsa M, Minca A, Dragos D, Popa C (2015) Brain-heart axis – review article. J Med Life 8:266–271

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martinc B, Grabnar I, Vovk T (2012) The role of reactive species in epileptogenesis and influence of antiepileptic drug therapy on oxidative stress. Curr Neuropharmacol 10:328–343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez-Aran A, Vieta E, Colom F, Goikolea JM, Colom F, Martínez-Arán A, Benabarre A (2004) Cognitive impairment in euthymic bipolar patients: implications for clinical and functional outcome. Bipolar Disord 6:224–232

    Article  CAS  PubMed  Google Scholar 

  • Mattson MP, Duan W, Pedersen WA, Culmsee C (2001) Neurodegenerative disorders and ischemic brain diseases. Apoptosis 6:69–81

    Article  CAS  PubMed  Google Scholar 

  • McIntyre RS, Danilewitz M, Liauw SS, Kemp DE, Nguyen HT, Kahn LS, Kucyi A, Soczynska JK, Woldeyohannes HO, Lachowski A, Kim B, Nathanson J, Alsuwaidan M, Taylor VH (2010) Bipolar disorder and metabolic syndrome: an international perspective. J Affect Disord 126:366–387

    Article  PubMed  Google Scholar 

  • McNally SJ, Harrison EM, Ross JA, Garden OJ, Wigmore SJ (2007) Curcumin induces heme oxygenase 1 through generation of reactive oxygen species, p38 activation and phosphatase inhibition. Int J Mol Med 19:165–172

    CAS  PubMed  Google Scholar 

  • Mei X, Xu D, Xu S, Zheng Y (2011) Gastroprotective and antidepressant effects of a new zinc(II)-curcumin complex in rodent models of gastric ulcer and depression induced by stresses. Pharmacol Biochem Behav 99:66–74

    Article  CAS  PubMed  Google Scholar 

  • Meisel C, Schwab J, Prass K, Meisel A, Dirnagl U (2005) Central nervous system injury-induced immune deficiency syndrome. Nat Rev Neurosci 6:775–786

    Article  CAS  PubMed  Google Scholar 

  • Miller GW, Erickson JD, Perez JT, Penland SN, Mash DC, Rye DB, Levey AI (1999) Immunochemical analysis of vesicular monoamine transporter (VMAT2) protein in Parkinson’s disease. Exp Neurol 156:138–148

    Article  CAS  PubMed  Google Scholar 

  • Miller E, Morel A, Saso L, Saluk J (2014) Isoprostanes and neuroprostanes as biomarkers of oxidative stress in neurodegenerative diseases. Oxid Med Cell Longev 2014:572491

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Milyukhina IV, Karpenko MN, Klimenko VM (2015) Clinical parameters and the level of certain cytokines in blood and cerebrospinal fluid of patients with Parkinson’s disease. Klin Med (Mosk) 93:51–55

    CAS  Google Scholar 

  • Minghetti L, Pocchiari M (2007) Cyclooxygenase-2, prostaglandin E2, and microglial activation in prion diseases. Int Rev Neurobiol 82:265–275

    Article  CAS  PubMed  Google Scholar 

  • Minghetti L, Greco A, Cardone F, Puopolo M, Ladogana A, Almonti S, Cunningham C, Perry VH, Pocchiari M, Levi G (2000) Increased brain synthesis of prostaglandin E2 and F2-isoprostane in human and experimental transmissible spongiform encephalopathies. J Neuropathol Exp Neurol 59:866–871

    Article  CAS  PubMed  Google Scholar 

  • Monsey MS, Gerhard DM, Boyle LM, Briones MA, Seligsohn M, Schafe GE (2015) A diet enriched with curcumin impairs newly acquired and reactivated fear memories. Neuropsychopharmacology 40:1278–1288

    Article  CAS  PubMed  Google Scholar 

  • Montine TJ, Sidell KR, Crews BC, Markesbery WR, Marnett LJ, Roberts LJ 2nd, Morrow JD (1998) Elevated cerebrospinal fluid prostaglandin E2 levels in patients with probable Alzheimer’s disease. Neurology 53:1495–1498

    Article  Google Scholar 

  • Montine TJ, Beal MF, Robertson D, Cudkowicz ME, Biaggioni I, O’Donnell H, Zackert WE, Roberts LJ, Morrow JD (1999) Cerebrospinal fluid F2-isoprostanes are elevated in Huntington’s disease. Neurology 52:1104–1105

    Article  CAS  PubMed  Google Scholar 

  • Morris G, Berk M (2015) The many roads to mitochondrial dysfunction in neuroimmune and neuropsychiatric disorders. BMC Med 13:68

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Motori E, Puyal J, Toni N, Ghanem A, Angeloni C, Malaguti M, Cantelli-Forti G, Berninger B, Conzelmann KK, Götz M, Winklhofer KF, Hrelia S, Bergami M (2013) Inflammation-induced alteration of astrocyte mitochondrial dynamics requires autophagy for mitochondrial network maintenance. Cell Metab 18:844–859

    Article  CAS  PubMed  Google Scholar 

  • Nagatsu T, Mogi M, Ichinose H, Togari A (2000) Cytokines in Parkinson’s disease. J Neural Transm Suppl 58:143–151

    PubMed  Google Scholar 

  • Noseworthy JH, Lucchinetti C, Rodriguez M, Weinshenker BG (2000) Multiple sclerosis. N Engl J Med 343:938–952

    Article  CAS  PubMed  Google Scholar 

  • Nygaard HB, Strittmatter SM (2009) Cellular prion protein mediates the toxicity of beta-amyloid oligomers: implications for Alzheimer disease. Arch Neurol 66:1325–1328

    PubMed  PubMed Central  Google Scholar 

  • O’Connor P (2002) Key issues in the diagnosis and treatment of multiple sclerosis. An overview. Neurology 59:S1–S33

    Article  PubMed  Google Scholar 

  • Ong WY, Tanaka K, Dawe GS, Ittner LM, Farooqui AA (2013) Slow excitotoxicity in Alzheimer’s disease. J Alzheimers Dis 35:643–668

    PubMed  Google Scholar 

  • Ormond DR, Shannon C, Oppenheim J, Zeman R, Das K, Murali R, Jhanwar-Uniyal M (2014) Stem cell therapy and curcumin synergistically enhance recovery from spinal cord injury. PLoS One 9, e88916

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pan R, Qiu S, Lu DX, Dong J (2008) Curcumin improves learning and memory ability and its neuroprotective mechanism in mice. Chin Med J (Engl) 121:832–839

    Google Scholar 

  • Pandey N, Strider J, Nolan WC, Yan SX, Galvin JE (2008) Curcumin inhibits aggregation of α-synuclein. Acta Neuropathol 115:479–489

    Article  CAS  PubMed  Google Scholar 

  • Parker G, Gibson NA, Brotchie H, Heruc G, Rees AM, Hadzi-Pavlovic D (2006) Omega-3 fatty acids and mood disorders. Am J Psychiatry 163:969–978

    Article  PubMed  Google Scholar 

  • Parkin ET, Watt NT, Hussain I, Eckman EA, Eckman CB, Manson JC, Baybutt HN, Turner AJ, Hooper NM (2007) Cellular prion protein regulates beta-secretase cleavage of the Alzheimer’s amyloid precursor protein. Proc Natl Acad Sci U S A 104:11062–11067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Periluigi M, Fai Poon H, Hensley K, Pieree WM, Klein JB, Calabrese V, De Marco C, Butterfield DA (2005) Proteomic analysis of 4-hydroxy-2-nonenal-modified proteins in G93A-SOD1 transgenic mice—a model of familial amyotrophic lateral sclerosis. Free Radic Biol Med 38:960–968

    Article  CAS  Google Scholar 

  • Petersen SE, Posner MI (2012) The attention system of the human brain: 20 years after. Annu Rev Neurosci 35:73–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phillis JW, Horrocks LA, Farooqui AA (2006) Cyclooxygenases, lipoxygenases, and epoxygenases in CNS: their role and involvement in neurological disorders. Brain Res Rev 52:201–243

    Article  CAS  PubMed  Google Scholar 

  • Pieri L, Madiona K, Bousset L, Melki R (2012) Fibrillar alpha-synuclein and huntingtin exon 1 assemblies are toxic to the cells. Biophys J 102:2894–2905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pistell PJ, Morrison CD, Gupta S, Knight AG, Keller JN, Ingram DK, Bruce-Keller AJ (2010) Cognitive impairment following high fat diet consumption is associated with brain inflammation. J Neuroimmunol 219:25–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pitkanen A, Kharatishvili I, Karhunen H, Lukasiuk K, Immonen R, Nairismägi J, Gröhn O, Nissinen J (2007) Epileptogenesis in experimental models. Epilepsia 48(Suppl 2):13–20

    Article  CAS  PubMed  Google Scholar 

  • Prusiner SB (2001) Shattuck lecture—neurodegenerative diseases and prions. N Engl J Med 344:1516–1526

    Article  CAS  PubMed  Google Scholar 

  • Qin Z, Hu D, Han S, Reaney SH, Di Monte DA, Fink AL (2007) Effect of 4-hydroxy-2-nonenal modification on alpha-synuclein aggregation. J Biol Chem 282:5862–5870

    Article  CAS  PubMed  Google Scholar 

  • Qureshi IA, Mehler MF (2010a) Epigenetic mechanisms underlying human epileptic disorders and the process of epileptogenesis. Neurobiol Dis 39:53–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qureshi IA, Mehler MF (2010b) The emerging role of epigenetics in stroke II. RNA regulatory circuitry. Arch Neurol 67:1435–1441

    PubMed  PubMed Central  Google Scholar 

  • Raghupathi R (2004) Cell death mechanisms following traumatic brain injury. Brain Pathol 14:215–222

    Article  PubMed  Google Scholar 

  • Rakhade SN, Jensen FE (2009) Epileptogenesis in the immature brain: emerging mechanisms. Nat Rev Neurol 5:380–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ray B, Bisht S, Maitra A, Naitra A, Lahiri DK (2011) Neuroprotective and neurorescue effects of a novel polymeric nanoparticle formulation of curcumin (NanoCurc®) in the neuronal cell culture and animal model: implications for Alzheimer’s disease. J Alzheimers Dis 23:61–77

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rostami E, Krueger F, Plantman S, Davidsson J, Agoston D, Grafman J, Risling M (2014) Alteration in BDNF and its receptors, full-length and truncated TrkB and p75(NTR) following penetrating traumatic brain injury. Brain Res 1542:195–205

    Article  CAS  PubMed  Google Scholar 

  • Rubinsztein DC, Leggo J, Coles R, Almqvist E, Biancalana V, Cassiman JJ, Chotai K, Connarty M, Crauford D, Curtis A, Curtis D, Davidson MJ, Differ AM, Dode C, Dodge A, Frontali M, Ranen NG, Stine OC, Sherr M, Abbott MH, Franz ML, Graham CA, Harper PS, Hedreen JC, Hayden MR (1996) Phenotypic characterization of individuals with 30-40 CAG repeats in the Huntington disease (HD) gene reveals HD cases with 36 repeats and apparently normal elderly individuals with 36-39 repeats. Am J Hum Genet 59:16–22

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rudinskiy N, Kaneko YA, Beesen AA, Gokce O, Regulier E, Deglon N, Luthi-Carter R (2009) Diminished hippocalcin expression in Huntington’s disease brain does not account for increased striatal neuron vulnerability as assessed in primary neurons. J Neurochem 111:460–472

    Article  CAS  PubMed  Google Scholar 

  • Sanmukhani J, Anovadiya A, Tripathi CB (2011) Evaluation of antidepressant like activity of curcumin and its combination with fluoxetine and imipramine: an acute and chronic study. Acta Pol Pharm 68:769–775

    CAS  PubMed  Google Scholar 

  • Sanmukhani J, Satodia V, Trivedi J, Patel T, Tiwari D, Panchal B, Goel A, Tripathi CB (2014) Efficacy and safety of curcumin in major depressive disorder: a randomized controlled trial. Phytother Res 28:579–585

    Article  CAS  PubMed  Google Scholar 

  • Scapagnini G, Butterfield DA, Colombrita C, Sultana R, Pascale A, Calabrese V (2004) Ethyl ferulate, a lipophilic polyphenol, induces HO-1 and protects rat neurons against oxidative stress. Antioxid Redox Signal 6:811–818

    Article  CAS  PubMed  Google Scholar 

  • Scapagnini G, Colombrita C, Amadio M, D’Agata V, Arcelli E, Sapienza M, Quattrone A, Calabrese V (2006) Curcumin activates defensive genes and protects neurons against oxidative stress. Antioxid Redox Signal 8:395–403

    Article  CAS  PubMed  Google Scholar 

  • Scapagnini G, Vasto S, Abraham NG, Caruso C, Zella D, Fabio G (2011) Modulation of Nrf2/ARE pathway by food polyphenols: a nutritional neuroprotective strategy for cognitive and neurodegenerative disorders. Mol Neurobiol 44:192–201

    Article  CAS  PubMed  Google Scholar 

  • Scapagnini G, Davinelli S, Drago F, De Lorenzo A, Oriani G (2012) Antioxidants as antidepressants: fact or fiction? CNS Drugs 26:477–490

    Article  CAS  PubMed  Google Scholar 

  • Scherzinger E, Lurz R, Turmaine M, Mangiarini L, Hollenbach B, Hasenbank R, Bates GP, Davies SW, Lehrach H, Wanker EE (1997) Huntingtin-encoded polyglutamine expansions form amyloid-like protein aggregates in vitro and in vivo. Cell 90:549–558

    Article  CAS  PubMed  Google Scholar 

  • Schmidt S, Kwee LC, Allen KD, Oddone EZ (2010) Association of ALS with head injury, cigarette smoking and APOE genotypes. J Neurol Sci 291:22–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmitt-Ulms G, Hansen K, Liu J, Cowdrey C, Yang J, DeArmond SJ, Cohen FE, Prusiner SB, Baldwin MA (2004) Time-controlled transcardiac perfusion cross-linking for the study of protein interactions in complex tissues. Nat Biotechnol 22:724–731

    Article  CAS  PubMed  Google Scholar 

  • Seet RC, Lee CY, Lim EC, Tan JJ, Quek AM, Chong WL, Looi WF, Huang SH, Wang H, Chan YH, Halliwell B (2010) Oxidative damage in Parkinson disease: measurement using accurate biomarkers. Free Radic Biol Med 48:560–566

    Article  CAS  PubMed  Google Scholar 

  • Selkoe DJ (2003) Folding proteins in fatal ways. Nature 426:900–904

    Article  CAS  PubMed  Google Scholar 

  • Severson C, Hafler DA (2010) T-cells in multiple sclerosis. Results Probl Cell Differ 51:75–98

    Article  CAS  PubMed  Google Scholar 

  • Sharma S, Zhuang Y, Ying Z, Wu A, Gomez-Pinilla F (2009) Dietary curcumin supplementation counteracts reduction in levels of molecules involved in energy homeostasis after brain trauma. Neuroscience 161:1037–1044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma S, Ying Z, Gomez-Pinilla F (2010) A pyrazole curcumin derivative restores membrane homeostasis disrupted after brain trauma. Exp Neurol 226:191–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Signoretti S, Marmarou A, Tavazzi B, Dunbar J, Amorini AM, Lazzarino G, Vagnozzi R (2004) The protective effect of cyclosporin A upon N-acetylaspartate and mitochondrial dysfunction following experimental diffuse traumatic brain injury. J Neurotrauma 21:1154–1167

    Article  PubMed  Google Scholar 

  • Silverstein FS, Jensen FE (2007) Neonatal seizures. Ann Neurol 62:112–120

    Article  PubMed  Google Scholar 

  • Simon-Sanchez J, Schulte C, Bras JM, Sharma M, Gibbs JR, Berg D, Paisan-Ruiz C, Lichtner P, Scholz SW, Hernandez DG, Kruger R, Federoff M, Klein C, Goate A, Perlmutter J, Bonin M, Nalls MA, Illig T, Gieger C, Houlden H, Steffens M, Okun MS, Racette BA, Cookson MR, Foote KD, Fernandez HH, Traynor BJ, Schreiber S, Arepalli S, Zonozi R, Gwinn K, van der Brug M, Lopez G, Chanock SJ, Schatzkin A, Park Y, Hollenbeck A, Gao J, Huang X, Wood NW, Lorenz D, Deuschl G, Chen H, Riess O, Hardy JA, Singleton AB, Gasser T (2009) Genome-wide association study reveals genetic risk underlying Parkinson’s disease. Nat Genet 41:1308–1312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Son S, Kim K-T, Cho D-C, Kim H-J, Sung J-K, Bae J-S (2014) Curcumin stimulates proliferation of spinal cord neural progenitor cells via a mitogen-activated protein kinase signaling pathway. J Korean Neurosurg Soc 56:1–4

    Article  PubMed  PubMed Central  Google Scholar 

  • Soto C, Estrada LD (2008) Protein misfolding and neurodegeneration. Arch Neurol 65:184–189

    PubMed  Google Scholar 

  • Speare JO, Offerdahl DK, Hasenkrug A, Carmody AB, Baron GS (2010) GPI anchoring facilitates propagation and spread of misfolded Sup35 aggregates in mammalian cells. EMBO J 29:782–794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spinelli KJ, Osterberg VR, Meshul CK, Soumyanath A, Unni VK (2015) Curcumin treatment improves motor behavior in α-synuclein transgenic mice. PLoS One 10, e0128510

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sreejayan, Rao MN (1997) Nitric oxide scavenging by curcuminoids. J Pharm Pharmacol 49:105–107

    Article  CAS  PubMed  Google Scholar 

  • Srinivas BMM, Mythri R, Jagatha B, Vali S (2008) Neuroprotective effect of curcumin against inhibition of mitochondrial complex I in vitro and in vivo. Implications for Parkinson’s disease explained via in silico studies. J Neurochem 106:9–28

    Article  Google Scholar 

  • Steinman L (2009) A molecular trio in relapse and remission in multiple sclerosis. Nat Rev Immunol 9:440–447

    Article  CAS  PubMed  Google Scholar 

  • Svenningsson P, Nishi A, Fisone G, Girault JA, Nairn AC, Greengard P (2004) DARPP-32: an integrator of neurotransmission. Annu Rev Pharmacol Toxicol 44:269–296

    Article  CAS  PubMed  Google Scholar 

  • Takahashi J, Palmer TD, Gage FH (1999) Retinoic acid and neurotrophins collaborate to regulate neurogenesis in adult-derived neural stem cell cultures. J Neurobiol 38:65–81

    Article  CAS  PubMed  Google Scholar 

  • Thickbroom GW, Mastaglia FL (2009) Plasticity in neurological disorders and challenges for noninvasive brain stimulation (NBS). J Neuroeng Rehabil 6:4–10

    Article  PubMed  PubMed Central  Google Scholar 

  • Thomas P, Wang YJ, Zhong JH, Kosaraju S, O’Callaghan NJ, Zhou XF, Fenech M (2009) Grape seed polyphenols and curcumin reduce genomic instability events in a transgenic mouse model for Alzheimer’s disease. Mutat Res 661:25–34

    Article  CAS  PubMed  Google Scholar 

  • Um JW, Kaufman AC, Kostylev M, Heiss JK, Stagi M, Takahashi H, Kerrisk ME, Vortmeyer A, Wisniewski T, Koleske AJ, Gunther EC, Nygaard HB, Strittmatter SM (2013) Metabotropic glutamate receptor 5 is a coreceptor for Alzheimer aβ oligomer bound to cellular prion protein. Neuron 79:887–902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Urra X, Cervera A, Villamor N, Planas AM, Chamorro A (2009) Harms and benefits of lymphocyte subpopulations in patients with acute stroke. Neuroscience 158:1174–1183

    Article  CAS  PubMed  Google Scholar 

  • Uversky VN, Eliezer D (2009) Biophysics of Parkinson’s disease: structure and aggregation of alpha-synuclein. Curr Protein Pept Sci 10:483–499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uversky VN, Li J, Fink AL (2001a) Metal-triggered structural transformations, aggregation, and fibrillation of human α-synuclein. A possible molecular NK between Parkinson’s disease and heavy metal exposure. J Biol Chem 276:44284–44296

    Article  CAS  PubMed  Google Scholar 

  • Uversky VN, Li J, Fink AL (2001b) Pesticides directly accelerate the rate of alpha-synuclein fibril formation a possible factor in Parkinson’s disease. FEBS Lett 500:105–108

    Article  CAS  PubMed  Google Scholar 

  • Van Everbroeck B, Dewulf E, Pals P, Lübke U, Martin JJ, Cras P (2002) The role of cytokines, astrocytes, microglia and apoptosis in Creutzfeldt-Jakob disease. Neurobiol Aging 23:59–64

    Article  PubMed  Google Scholar 

  • Vila M, Vukosavic S, Jackson-Lewis V, Neystat M, Jakowec M, Przedborski S (2000) α-Synuclein up-regulation in substantia nigra dopaminergic neurons following administration of the Parkinsonian toxin MPTP. J Neurochem 74:721–729

    Article  CAS  PubMed  Google Scholar 

  • Volles MJ, Lee SJ, Rochet JC, Shtilerman MD, Ding TT, Kessler JC, Lansbury PT Jr (2001) Vesicle permeabilization by protofibrillar alpha-synuclein: implications for the pathogenesis and treatment of Parkinson’s disease. Biochemistry 40:7812–7819

    Article  CAS  PubMed  Google Scholar 

  • Wang R, Xu Y, Wu HL, Li YB, Li YH, Guo JB, Li XJ (2008) The antidepressant effects of curcumin in the forced swimming test involve 5-HT1 and 5-HT2 receptors. Eur J Pharmacol 578:43–50

    Article  CAS  PubMed  Google Scholar 

  • Wang YJ, Thomas P, Zhong JH, Bi FF, Kosaraju S, Pollard A, Fenech M, Zhou XF (2009) Consumption of grape seed extract prevents amyloid-β deposition and attenuates inflammation in brain of an Alzheimer’s disease mouse. Neurotox Res 15:3–14

    Article  PubMed  CAS  Google Scholar 

  • Wang HM, Zhao YX, Zhang S, Liu GD, Kang WY, Tang HD, Ding JQ, Chen SD (2010a) PPARgamma agonist curcumin reduces the amyloid-beta-stimulated inflammatory responses in primary astrocytes. J Alzheimers Dis 20:1189–1199

    CAS  PubMed  Google Scholar 

  • Wang MS, Boddapati S, Emadi S, Sierks MR (2010b) Curcumin reduces α-synuclein induced cytotoxicity in Parkinson’s disease cell model. BMC Neurosci 11:57

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang Y, Yin H, Wang L, Shuboy A, Lou J, Han B, Zhang X, Li J (2013) Curcumin as a potential treatment for Alzheimer’s disease: a study of the effects of curcumin on hippocampal expression of glial fibrillary acidic protein. Am J Chin Med 41:59–70

    Article  PubMed  CAS  Google Scholar 

  • Wang YF, Zu JN, Li J, Chen C, Xi CY, Yan JL (2014a) Curcumin promotes the spinal cord repair via inhibition of glial scar formation and inflammation. Neurosci Lett 560:51–56

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Guan PP, Wang T, Yu X, Guo JJ, Wang ZY (2014b) Aggravation of Alzheimer’s disease due to the COX-2-mediated reciprocal regulation of IL-1β and Aβ between glial and neuron cells. Aging Cell 13:605–615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu A, Ying Z, Gomez-Pinilla F (2006) Dietary curcumin counteracts the outcome of traumatic brain injury on oxidative stress, synaptic plasticity, and cognition. Exp Neurol 197:309–317

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Stoica BA, Faden AI (2011) Cell cycle activation and spinal cord injury. Neurotherapeutics 8:221–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J, Li Q, Wang X, Yu S, Li L, Wu X, Chen Y, Zhao J, Zhao Y (2013) Neuroprotection by curcumin in ischemic brain injury involves the Akt/Nrf2 pathway. PLoS One 8, e59843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J, Zhao Z, Sabirzhanov B, Stoica BA, Kumar A, Luo T, Skovira J, Faden AI (2014) Spinal cord injury causes brain inflammation associated with cognitive and affective changes: role of cell cycle pathways. J Neurosci 34:10989–11006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xie L, Li XK, Funeshima-Fuji N, Kimura H, Matsumoto Y, Isaka Y, Takahara S (2009) Amelioration of experimental autoimmune encephalomyelitis by curcumin treatment through inhibition of IL-17 production. Int Immunopharmacol 9:575–581

    Article  CAS  PubMed  Google Scholar 

  • Xiong Y, Mahmood A, Chopp M (2013) Animal models of traumatic brain injury. Nat Rev Neurosci 14:128–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Ku BS, Yao HY, Lin YH, Ma X, Zhang YH, Li XJ (2005) The effects of curcumin on depressive-like behaviors in mice. Eur J Pharmacol 518:40–46

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Ku B, Tie L, Yao H, Jiang W, Ma X, Li X (2006a) Curcumin reverses the effects of chronic stress on behavior, the HPA axis, BDNF expression and phosphorylation of CREB. Brain Res 1122:56–64

    Article  CAS  PubMed  Google Scholar 

  • Xu F, Plummer MR, Len GW, Nakazawa T, Yamamoto T, Black IB, Wu K (2006b) Brain-derived neurotrophic factor rapidly increases NMDA receptor channel activity through Fyn-mediated phosphorylation. Brain Res 1121:22–34

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Ku B, Cui L, Li X, Barish PA, Foster TC, Ogle WO (2007) Curcumin reverses impaired hippocampal neurogenesis and increases serotonin receptor 1A mRNA and brain-derived neurotrophic factor expression in chronically stressed rats. Brain Res 1162:9–18

    Article  CAS  PubMed  Google Scholar 

  • Yang F, Lim GP, Begum AN, Ubeda OJ, Simmons MR, Ambegaokar SS, Chen PP, Kayed R, Glabe CG, Frautschy SA, Cole GM (2005) Curcumin inhibits formation of amyloid β oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J Biol Chem 280:5892–5901

    Article  CAS  PubMed  Google Scholar 

  • Yang C, Zhang X, Fan H, Liu Y (2009) Curcumin upregulates transcription factor Nrf2, HO-1 expression and protects rat brains against focal ischemia. Brain Res 1282:133–141

    Article  CAS  PubMed  Google Scholar 

  • Yasojima K, Tourtellotte WW, McGeer EG, McGeer PL (2001) Marked increase in cyclooxygenase-2 in ALS spinal cord: implications for therapy. Neurology 57:952–956

    Article  CAS  PubMed  Google Scholar 

  • Yoshii A, Constantine-Paton M (2010) Postsynaptic BDNF-TrkB signaling in synapse maturation, plasticity, and disease. Dev Neurobiol 70:304–322

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan J, Zou M, Xiang X, Zhu H, Chu W, Liu W, Chen F, Lin J (2015) Curcumin improves neural function after spinal cord injury by the joint inhibition of the intracellular and extracellular components of glial scar. J Surg Res 195:235–245

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Yu S, Zheng W, Feng G, Luo G, Wang L, Zhao Y (2010) Curcumin improves outcomes and attenuates focal cerebral ischemic injury via antiapoptotic mechanisms in rats. Neurochem Res 35:374–379

    Article  CAS  PubMed  Google Scholar 

  • Zhou M, Xu S, Mi J, Uéda K, Chan P (2013) Nuclear translocation of alpha-synuclein increases susceptibility of MES23.5 cells to oxidative stress. Brain Res 1500:19–27

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Farooqui, A.A. (2016). Therapeutic Importance of Curcumin in Neurological Disorders Other Than Alzheimer Disease. In: Therapeutic Potentials of Curcumin for Alzheimer Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-15889-1_8

Download citation

Publish with us

Policies and ethics