Skip to main content

Effect of Curcumin on Growth Factors and Their Receptors, Ion Channels, and Transporters in the Visceral Organs and the Brain

  • Chapter
  • First Online:
Therapeutic Potentials of Curcumin for Alzheimer Disease
  • 1045 Accesses

Abstract

Curcumin is a diferulomethane derived from the Indian spice plant Curcuma longa. It interferes with cell signaling pathways associated with apoptotic cell death, proliferation, angiogenesis, neuroinflammation, and oxidative stress. Recent studies have revealed that curcumin mediates its effects by interacting and modulating with several growth factors (VEGF, bFGF, EGF, and HIF), ion channels, and transporters. These growth factors not only regulate inflammatory responses and control apoptotic cell death, but also modulate angiogenesis. Molecular mechanisms of curcumin action not only include the inhibition of proinflammatory enzymes, such as COX-2, LOX, and iNOS, PtdIns 3 K, and tyrosine kinases, but also the activation of MAPK and PKC along with the modulation of several cell survival/cell-cycle genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal KA, Tripathi CD, Agarwal BB, Saluja S (2011) Efficacy of turmeric (curcumin) in pain and postoperative fatigue after laparoscopic cholecystectomy: a double-blind, randomized placebo-controlled study. Surg Endosc 25:3805–3810

    Article  PubMed  Google Scholar 

  • Aggarwal BB, Sung B (2009) Pharmacological basis for the role of curcumin in chronic diseases: an age-old spice with modern targets. Trends Pharmacol Sci 30:85–94

    Article  CAS  PubMed  Google Scholar 

  • Aggarwal S, Ichikawa H, Takada Y, Sandur SK, Shishodia S, Aggarwal BB (2006) Curcumin (diferuloylmethane) down-regulates expression of cell proliferation and antiapoptotic and metastatic gene products through suppression of IkappaBalpha kinase and Akt activation. Mol Pharmacol 69:195–206

    CAS  PubMed  Google Scholar 

  • Ahmed K, Cao N, Li J (2006) HER-2 and NF-kappaB as targets for therapy-resistant breast cancers. Anticancer Res 26:4235–4243

    CAS  PubMed  PubMed Central  Google Scholar 

  • Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB (2007) Bioavailability of curcumin: problems and promises. Mol Pharm 4:807–818

    Article  CAS  PubMed  Google Scholar 

  • Anuchapreeda S, Leechanachai P, Smith MM, Ambudkar SV, Limtrakul PN (2002) Modulation of P-glycoprotein expression and function by curcumin in multidrug-resistant human KB cells. Biochem Pharmacol 64:573–582

    Article  CAS  PubMed  Google Scholar 

  • Aoki H, Takada Y, Kondo S, Sawaya R, Aggarwal BB, Kondo Y (2007) Evidence that curcumin suppresses the growth of malignant gliomas in vitro and in vivo through induction of autophagy: role of Akt and extracellular signal-regulated kinase signaling pathways. Mol Pharmacol 72:29–39

    Article  CAS  PubMed  Google Scholar 

  • Arbiser JL, Klauber N, Rohan R, van Leeuwen R, Huang MT, Fisher C, Flynn E, Byers HR (1998) Curcumin is an in vivo inhibitor of angiogenesis. Mol Med 4:376–383

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bae MK, Kim SH, Jeong JW, Lee YM, Kim HS, Kim SR, Yun I, Bae SK, Kim KW (2006) Curcumin inhibits hypoxia-induced angiogenesis via down-regulation of HIF-1. Oncol Rep 15:1557–1562

    CAS  PubMed  Google Scholar 

  • Banderali U, Belke D, Singh A, Jayanthan A, Giles WR, Narendran A (2011) Curcumin blocks Kv11.1 (erg) potassium current and slows proliferation in the infant acute monocytic leukemia cell line THP-1. Cell Physiol Biochem 28:1169–1180

    Article  CAS  PubMed  Google Scholar 

  • Barry J, Fritz M, Brender JR, Smith PE, Lee DK, Ramamoorthy A (2009) Determining the effects of lipophilic drugs on membrane structure by solid-state NMR spectroscopy: the case of the antioxidant curcumin. J Am Chem Soc 131:4490–4498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bar-Sela G, Epelbaum R, Schaffer M (2010) Curcumin as an anti-cancer agent: review of the gap between basic and clinical applications. Curr Med Chem 17:190–197

    Article  CAS  PubMed  Google Scholar 

  • Beevers CS, Chen L, Liu L, Luo Y, Webster NJ, Huang S (2009) Curcumin disrupts the Mammalian target of rapamycin-raptor complex. Cancer Res 69:1000–1008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beevers CS, Zhou H, Huang S (2013) Hitting the golden TORget: curcumin’s effects on mTOR signaling. Anticancer Agents Med Chem 13:988–994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belvisi MG, Hele DJ, Birrell MA (2006) Peroxisome proliferator-activated receptor gamma agonists as therapy for chronic airway inflammation. Eur J Pharmacol 533:101–109

    Article  CAS  PubMed  Google Scholar 

  • Berger AL, Randak CO, Ostedgaard LS, Karp PH, Vermeer DW, Welsh MJ (2005) Curcumin stimulates cystic fibrosis transmembrane conductance regulator Cl channel activity. J Biol Chem 280:5221–5226

    Article  CAS  PubMed  Google Scholar 

  • Blaikie P, Immanuel D, Wu J, Li N, Yajnik V, Margolis B (1994) A region in Shc distinct from the SH2 domain can bind tyrosine-phosphorylated growth factor receptors. J Biol Chem 269:32031–32034

    CAS  PubMed  Google Scholar 

  • Bogoyevitch MA, Gillespie-Brown J, Ketterman AJ, Fuller SJ, Ben-Levy R, Ashworth A, Marshall CJ, Sugden PH (1996) Stimulation of the stress-activated mitogen-activated protein kinase subfamilies in perfused heart. p38/RK mitogen-activated protein kinases and c-Jun N-terminal kinases are activated by ischemia/reperfusion. Circ Res 79:162–173

    Article  CAS  PubMed  Google Scholar 

  • Brondino N, Re S, Boldrini A, Cuccomarino A, Lanati N, Barale F, Politi P (2014) Curcumin as a therapeutic agent in dementia: a mini systematic review of human studies. ScientificWorldJournal 2014:174282

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Burgess A, Cho H, Eigenbrot C, Ferguson KM, Garrett TP, Leahy DJ, Lemmon MA, Sliwkowski MX, Ward CW, Yokoyama S (2003) An open-and-shut case? Recent insights into the activation of EGF/ErbB receptors. Mol Cell 12:541–552

    Article  CAS  PubMed  Google Scholar 

  • Cao Y (2007) Angiogenesis modulates adipogenesis and obesity. J Clin Invest 117:2362–2368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carpenter G, Cohen S (1990) Epidermal growth factor. J Biol Chem 265:7709–7712

    CAS  PubMed  Google Scholar 

  • Chadalapaka G, Jutooru I, Chintharlapalli S, Papineni S, Smith R 3rd, Li X, Safe S (2008) Curcumin decreases specificity protein expression in bladder cancer cells. Cancer Res 68:5345–5354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen A, Xu J (2005) Activation of PPAR{gamma} by curcumin inhibits Moser cell growth and mediates suppression of gene expression of cyclin D1 and EGFR. Am J Physiol Gastrointest Liver Physiol 288:G447–G456

    Article  CAS  PubMed  Google Scholar 

  • Choi JS, Kim SY, Cha JH, Choi YS, Sung KW, Oh ST, Kim ON, Chung JW, Chun MH, Lee SB, Lee MY (2003) Upregulation of gp130 and STAT3 activation in the rat hippocampus following transient forebrain ischemia. Glia 41:237–246

    Article  PubMed  Google Scholar 

  • Choi SW, Kim KS, Shin DH, Yoo HY, Choe H, Ko TH, Youm JB, Kim WK, Zhang YH, Kim SJ (2013) Class 3 inhibition of hERG K(+) channel by caffeic acid phenethyl ester (CAPE) and curcumin. Pflugers Arch 465:1121–1134

    Article  CAS  PubMed  Google Scholar 

  • Combs CK, Johnson DE, Karlo JC, Cannady SB, Landreth GE (2000) Inflammatory mechanisms in Alzheimer’s disease: inhibition of beta-amyloid-stimulated proinflammatory responses and neurotoxicity by PPARgamma agonists. J Neurosci 20:558–567

    CAS  PubMed  Google Scholar 

  • Da Hong H, Son YK, Choi IW, Park WS (2013) The inhibitory effect of curcumin on voltage-dependent K(+) channels in rabbit coronary arterial smooth muscle cells. Biochem Biophys Res Commun 430:307–312

    Article  CAS  Google Scholar 

  • Dancey J, Freidlin B (2003) Targeting epidermal growth factor receptor--are we missing the mark? Lancet 362:62–64

    Article  CAS  PubMed  Google Scholar 

  • De Paz-Campos MA, Chavez-Pina AE, Ortiz MI, Castaneda-Hernandez G (2012) Evidence for the participation of ATP-sensitive potassium channels in the antinociceptive effect of curcumin. Korean J Pain 25:221–227

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dennis PB, Jaeschke A, Saitoh M, Fowler B, Kozma SC, Thomas G (2001) Mammalian TOR: a homeostatic ATP sensor. Science 294:1102–1105

    Article  CAS  PubMed  Google Scholar 

  • Després JP, Lemieux I, Prud’homme D (2001) Treatment of obesity: need to focus on high risk abdominally obese patients. BMJ 322:716–720

    Article  PubMed  PubMed Central  Google Scholar 

  • Du J, Wilson PD (1995) Abnormal polarization of EGF receptors and autocrine stimulation of cyst epithelial growth in human ADPKD. Am J Physiol 269:C487–C495

    CAS  PubMed  Google Scholar 

  • Ejaz A, Wu D, Kwan P, Meydani M (2009) Curcumin inhibits adipogenesis in 3T3-L1 adipocytes and angiogenesis and obesity in C57/BL mice. J Nutr 139:919–925

    Article  CAS  PubMed  Google Scholar 

  • Ema M, Hirota K, Mimura J, Abe H, Yodoi J, Sogawa K, Poellinger L, Fujii-Kuriyama Y (1999) Molecular mechanisms of transcription activation by HLF and HIF1α in response to hypoxia: their stabilization and redox signal-induced interaction with CBP/p300. EMBO J J18:1905–1914

    Article  Google Scholar 

  • Farooqui AA (2010) Neurochemical aspects of neurotraumatic and neurodegenerative diseases. Springer, New York

    Book  Google Scholar 

  • Farooqui AA (2013) Metabolic syndrome: an important risk factor for stroke, Alzheimer disease, and depression. Springer, New York

    Book  Google Scholar 

  • Farooqui AA, Farooqui T, Panza F, Frisardi V (2012) Metabolic syndrome as a risk factor for neurological disorders. Cell Mol Life Sci 69:741–762

    Article  CAS  PubMed  Google Scholar 

  • Ferrara N (2004) Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev 25:581–611

    Article  CAS  PubMed  Google Scholar 

  • Ferrara N, Hillan KJ, Novotny W (2005) Bevacizumab (Avastin), a humanized anti-VEGF monoclonal antibody for cancer therapy. Biochem Biophys Res Commun 333:328–335

    Article  CAS  PubMed  Google Scholar 

  • Fiala M, Liu PT, Espinosa-Jeffrey A, Rosenthal MJ, Bernard G, Ringman JM, Sayre J, Zhang L, Zaghi J, Dejbakhsh S, Chiang B, Hui J, Mahanian M, Baghaee A, Hong P, Cashman J (2007) Innate immunity and transcription of MGAT-III and Toll-like receptors in Alzheimer’s disease patients are improved by bisdemethoxycurcumin. Proc Natl Acad Sci U S A 104:12849–12854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forman BM, Chen J, Evans RM (1996) The peroxisome proliferator-activated receptors: ligands and activators. Ann N Y Acad Sci 804:266–275

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Alloza M, Borrelli LA, Rozkalne A, Hyman BT, Bacskai BJ (2007) Curcumin labels amyloid pathology in vivo, disrupts existing plaques, and partially restores distorted neurites in an Alzheimer mouse model. J Neurochem 102:1095–1104

    Article  CAS  PubMed  Google Scholar 

  • Goel A, Kunnumakkara AB, Aggarwal BB (2008) Curcumin as “Curecumin”: from kitchen to clinic. Biochem Pharmacol 75:787–809

    Article  CAS  PubMed  Google Scholar 

  • Gomez-Pinillos A, Ferrari AC (2012) mTOR signalling pathway and mTOR inhibitors in cancer therapy. Hematol Oncol Clin North Am 26:483–505

    Article  PubMed  Google Scholar 

  • Guertin DA, Sabatini DM (2007) Defining the role of mTOR in cancer. Cancer Cell 12:9–22

    Article  CAS  PubMed  Google Scholar 

  • Gururaj AE, Belakavadi M, Venkatesh DA, Marme D, Salimath BP (2002) Molecular mechanisms of anti-angiogenic effect of curcumin. Biochem Biophys Res Commun 297:934–942

    Article  CAS  PubMed  Google Scholar 

  • Hanada N, Lo H, Day C, Pan Y, Nakajima Y, Hung MC (2006) Co-regulation of B-Myb expression by E2F1 and EGF receptor. Mol Carcinog 45:10–17

    Article  CAS  PubMed  Google Scholar 

  • Hay N, Sonenberg N (2004) Upstream and downstream of mTOR. Genes Dev 18:1926–1945

    Article  CAS  PubMed  Google Scholar 

  • Hicklin DJ, Ellis LM (2005) Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol 23:1011–1027

    Article  CAS  PubMed  Google Scholar 

  • Hofmann HD, Kirsch M (2012) JAK2-STAT3 signaling: a novel function and a novel mechanism. JAKSTAT 1:191–193

    PubMed  PubMed Central  Google Scholar 

  • Hu X, Huang F, Szymusiak M, Liu Y, Wang ZJ (2015) Curcumin attenuates opioid tolerance and dependence by inhibiting Ca2+/calmodulin-dependent protein kinase II α activity. J Pharmacol Exp Ther 352:420–428

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang CZ, Huang WZ, Zhang G, Tang DL (2013a) In vivo study on the effects of curcumin on the expression profiles of anti-tumour genes (VEGF, CyclinD1 and CDK4) in liver of rats injected with DEN. Mol Biol Rep 40:5825–5831

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Huang K, Lan T, Xie X, Shen X, Liu P, Huang H (2013b) Curcumin ameliorates diabetic nephropathy by inhibiting the activation of the SphK1-S1P signaling pathway. Mol Cell Endocrinol 365:231–240

    Article  CAS  PubMed  Google Scholar 

  • Ingolfsson HI, Koeppe RE, Andersen OS (2007) Curcumin is a modulator of bilayer material properties. Biochemistry 46:10384–10391

    Article  CAS  PubMed  Google Scholar 

  • Jeong JM, Choi CH, Kang SK, Lee IH, Lee JY, Jung H (2007) Antioxidant and chemosensitizing effects of flavonoids with hydroxy and/or methoxy groups and structure-activity relationship. J Pharm Pharm Sci 10:537–546

    CAS  PubMed  Google Scholar 

  • Jiang B-H, Zheng JZ, Leung SW, Roe R, Semenza GL (1997) Transactivation and inhibitory domains of hypoxia-inducible factor 1alpha. Modulation of transcriptional activity by oxygen tension. J Biol Chem 272:19253–19260

    Article  CAS  PubMed  Google Scholar 

  • Jiang C, Ting AT, Seed B (1998) PPAR-gamma agonists inhibit production of monocyte inflammatory cytokines. Nature 391:82–86

    Article  CAS  PubMed  Google Scholar 

  • Johnston SR (2006) Targeting downstream effectors of epidermal growth factor receptor/HER2 in breast cancer with either farnesyltransferase inhibitors or mTOR antagonists. Int J Gynecol Cancer 16(Suppl 2):543–548

    Article  PubMed  Google Scholar 

  • Justicia C, Gabriel C, Planas AM (2000) Activation of the JAK/STAT pathway following transient focal cerebral ischemia: signaling through Jak1 and Stat3 in astrocytes. Glia 30:253–270

    Article  CAS  PubMed  Google Scholar 

  • Kalupahana NS, Moustaid-Moussa N, Claycombe KJ (2012) Immunity as a link between obesity and insulin resistance. Mol Aspects Med 33:26–34

    Article  CAS  PubMed  Google Scholar 

  • Kamba T, McDonald DM (2007) Mechanisms of adverse effects of anti-VEGF therapy for cancer. Br J Cancer 96:1788–1795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kashles O, Szapary D, Bellot F, Ullrich A, Schlessinger J, Schmidt A (1988) Ligand-induced stimulation of epidermal growth factor receptor mutants with altered transmembrane regions. Proc Natl Acad Sci U S A 85:9567–9571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kavanagh K, Jones KL, Sawyer J, Kelley K, Carr JJ, Wagner JD, Rudel LL (2007) Trans fat diet induces abdominal obesity and changes in insulin sensitivity in monkeys. Obesity (Silver Spring) 15:1675–1684

    Article  CAS  Google Scholar 

  • Kearney JB, Ambler CA, Monaco KA, Johnson N, Rapoport RG, Bautch VL (2002) Vascular endothelial growth factor receptor Flt-1 negatively regulates developmental blood vessel formation by modulating endothelial cell division. Blood 99:2397–2407

    Article  CAS  PubMed  Google Scholar 

  • Kim DH, Sarbassov DD, Ali SM, King JE, Latek RR, Erdjument-Bromage H, Tempst P, Sabatini DM (2002) mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110:163–175

    Article  CAS  PubMed  Google Scholar 

  • Kim HY, Park EJ, Joe EH, Jou I (2003) Curcumin suppresses Janus kinase-STAT inflammatory signaling through activation of Src homology 2 domain-containing tyrosine phosphatase 2 in brain microglia. J Immunol 17:6072–6079

    Article  Google Scholar 

  • Lafont C, Desarmenien MG, Cassou M, Molino F, Lecoq J, Hodson D, Lacampagne A, Mennessier G, El Yandouzi T, Carmignac D, Fontanaud P, Christian H, Coutry N, Fernandez-Fuente M, Charpak S, Le Tissier P, Robinson IC, Mollard P (2010) Cellular in vivo imaging reveals coordinated regulation of pituitary microcirculation and GH cell network function. Proc Natl Acad Sci U S A 107:4465–4470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laird MD, Sukumari-Ramesh S, Swift AE, Meiler SE, Vender JR, Dhandapani KM (2010) Curcumin attenuates cerebral edema following traumatic brain injury in mice: a possible role for aquaporin-4? J Neurochem 113:637–648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lemberger T, Desvergne B, Wahli W (1996) Peroxisome proliferator-activated receptors: a nuclear receptor signaling pathway in lipid physiology. Annu Rev Cell Dev Biol 12:335–363

    Article  CAS  PubMed  Google Scholar 

  • Levi M, van der Poll T, Schultz M (2012) Infection and inflammation as risk factors for thrombosis and atherosclerosis. Semin Thromb Hemost 38:506–514

    Article  CAS  PubMed  Google Scholar 

  • Li H, Ko HP, Whitlock JP Jr (1996) Induction of phosphoglycerate kinase 1 gene expression by hypoxia. Roles of Arnt and HIF1α. J Biol Chem 271:21262–21267

    Article  CAS  PubMed  Google Scholar 

  • Lian YT, Yang XF, Wang ZH, Yang Y, Shu YW, Cheng LX, Kiu K (2013) Curcumin serves as a human Kv1.3 blocker to inhibit effector memory T Lymphocyte activities. Phytother Res 27:1321–1327

    Article  CAS  PubMed  Google Scholar 

  • Libby P (2012) Inflammation in atherosclerosis. Arterioscler Thromb Vasc Biol 32:2045–2051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lijnen HR (2008) Angiogenesis and obesity. Cardiovasc Res 78:286–293

    Article  CAS  PubMed  Google Scholar 

  • Limtrakul P, Chearwae W, Shukla S, Phisalphong C, Ambudkar SV (2007) Modulation of function of three ABC drug transporters, P-glycoprotein (ABCB1), mitoxantrone resistance protein (ABCG2) and multidrug resistance protein 1 (ABCC1) by tetrahydrocurcumin, a major metabolite of curcumin. Mol. Cell. Biochem. 296:85–95

    Google Scholar 

  • Lin S, Makino K, Xia W, Matin A, Wen Y, Kwong KY, Bourguignon L, Hung MC (2001) Nuclear localization of EGF receptor and its potential new role as a transcription factor. Nat Cell Biol 3:802–808

    Article  CAS  PubMed  Google Scholar 

  • Lin TY, Lu CW, Wang C-C, Wang Y-C, Wang S-J (2011) Curcumin inhibits glutamate release in nerve terminals from rat prefrontal cortex: possible relevance to its antidepressant mechanism. Prog Neuropsychopharmacol Biol Psychiatry 35:1785–1793

    Article  CAS  PubMed  Google Scholar 

  • Lin J, Tang Y, Kang Q, Feng Y, Chen A (2012) Curcumin inhibits gene expression of receptor for advanced glycation end-products (RAGE) in hepatic stellate cells in vitro by elevating PPARgamma activity and attenuating oxidative stress. Br J Pharmacol 166:2212–2227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Q, Thoreen C, Wang J, Sabatini D, Gray NS (2009) mTOR mediated anti-cancer drug discovery. Drug Discov Today Ther Strateg 6:47–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu ZJ, Liu W, Liu L, Xiao C, Wang Y, Jiao JS (2013a) Curcumin protects neuron against cerebral ischemia-induced inflammation through improving PPAR-gamma function. Evid Based Complement Alternat Med 2013:470975

    PubMed  PubMed Central  Google Scholar 

  • Liu K, Gui B, Sun Y, Shi N, Gu Z, Zhang T, Sun X (2013b) Inhibition of L-type Ca2+ channels by curcumin requires a novel protein kinase-theta isoform in rat hippocampal neurons. Cell Calcium 53:195–203

    Article  CAS  PubMed  Google Scholar 

  • Lo H, Hsu S, Ali-Seyed M, Gunduz M, Xia W, Wei Y, Bartholomeusz G, Shih JY, Hung MC (2005) Nuclear interaction of EGFR and STAT3 in the activation of the iNOS/NO pathway. Cancer Cell 7:575–589

    Article  CAS  PubMed  Google Scholar 

  • Maradana MR, Thomas R, O’Sullivan BJ (2013a) Targeted delivery of curcumin for treating type 2 diabetes. Mol Nutr Food Res 57:1550–1556

    Article  CAS  PubMed  Google Scholar 

  • Maradana MR, Thomas R, O’Sullivan BJ (2013b) Targeted delivery of curcumin for treating type 2 diabetes. Mol Nutr Food Res 57:1550–1556

    Article  CAS  PubMed  Google Scholar 

  • Melenhorst WB, Mulder GM, Xi Q, Hoenderop JG, Kimura K, Eguchi S, van GH (2008) Epidermal growth factor receptor signaling in the kidney: key roles in physiology and disease. Hypertension 52:987–993

    Google Scholar 

  • Meng Z, Yan C, Deng Q, Gao DF, Niu XL (2013) Curcumin inhibits LPS-induced inflammation in rat vascular smooth muscle cells in vitro via ROS-relative TLR4-MAPK/NF-κB pathways. Acta Pharmacol Sin 34:901–911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meydani M, Hasan ST (2010) Dietary polyphenols and obesity. Nutrients 2:737–751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Millauer B, Wizigmann-Voos S, Schnurch H, Martinez R, Moller NP, Risau W, Ullrich A (1993) High affinity VEGF binding and development expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis. Cell 72:835–846

    Article  CAS  PubMed  Google Scholar 

  • Mittal N, Joshi R, Hota D, Chakrabarti A (2009) Evaluation of antihyperalgesic effect of curcumin on formalin-induced orofacial pain in rat. Phytother Res 23:507–512

    Article  CAS  PubMed  Google Scholar 

  • Moynagh PN (2005) The interleukin-1 signalling pathway in astrocytes: a key contributor to inflammation in the brain. J Anat 207:265–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicchia GP, Nico B, Camassa LM, Mola MG, Loh N, Dermietzel R, Spray DC, Svelto M, Frigeri A (2004) The role of aquaporin-4 in the blood-brain barrier development and integrity: studies in animal and cell culture models. Neuroscience 129:935–945

    Article  CAS  PubMed  Google Scholar 

  • Nicolas CS, Amici M, Bortolotto ZA, Doherty A, Csaba Z, Fafouri A, Dournaud P, Gressens P, Collingridge GL, Peineau S (2013) The role of JAK-STAT signaling within the CNS. JAKSTAT 2, e22925

    PubMed  PubMed Central  Google Scholar 

  • Okada S, Nakamura M, Katoh H, Miyao T, Shimazaki T, Ishii K, Yamane J, Yoshimura A, Iwamoto Y, Toyama Y, Okano H (2006) Conditional ablation of Stat3 or Socs3 discloses a dual role for reactive astrocytes after spinal cord injury. Nat Med 12:829–834

    Article  CAS  PubMed  Google Scholar 

  • Pearce LR, Huang X, Boudeau J, Pawlowski R, Wullschleger S, Deak M, Ibrahim AF, Gourlay R, Magnuson MA, Alessi DR (2007) Identification of Protor as a novel Rictor-binding component of mTOR complex-2. Biochem J 405:513–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plate KH, Breier G, Weich HA, Risau W (1992) Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo. Nature 359:845–847

    Article  CAS  PubMed  Google Scholar 

  • Pouysségur J, Dayan F, Mazure NM (2006) Hypoxia signalling in cancer and approaches to enforce tumour regression. Nature 441:437–443

    Article  PubMed  CAS  Google Scholar 

  • Powers CJ, McLeskey SW, Wellstein A (2000) Fibroblast growth factors, their receptors and signaling. Endocr Relat Cancer 7:165–197

    Article  CAS  PubMed  Google Scholar 

  • Pugh CW, Rourke JFO, Nagao M, Gleadle JM, Ratcliffe PJ (1997) Activation of hypoxia-inducible factor-1; definition of regulatory domains within the alpha subunit. J Biol Chem 272:11205–11214

    Article  CAS  PubMed  Google Scholar 

  • Qu R, Li Y, Gao Q, Shen L, Zhang J, Liu Z, Chen X, Chopp M (2007) Neurotrophic and growth factor gene expression profiling of mouse bone marrow stromal cells induced by ischemic brain extracts. Neuropathology 27:355–363

    Article  PubMed  PubMed Central  Google Scholar 

  • Rafiee P, Binion DG, Wellner M, Behmaram B, Floer M, Mitton E, Nie L, Zhang Z, Otterson MF (2010) Modulatory effect of curcumin on survival of irradiated human intestinal microvascular endothelial cells: role of Akt/mTOR and NF-κB. Am J Physiol Gastrointest Liver Physiol 298:G865–G877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raible DJ, Frey LC, Brooks-Kayal AR (2014) Effects of JAK2-STAT3 signaling after cerebral insults. JAKSTAT 3, e29510

    PubMed  PubMed Central  Google Scholar 

  • Ricote M, Li AC, Willson TM, Kelly CJ, Glass CK (1998) The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation. Nature 391:79–82

    Article  CAS  PubMed  Google Scholar 

  • Roberts CK, Barnard RJ, Sindhu RK, Jurczak M, Ehdaie A, Vaziri ND (2006) Oxidative stress and dysregulation of NAD(P)H oxidase and antioxidant enzymes in diet-induced metabolic syndrome. Metabolism 55:928–934

    Article  CAS  PubMed  Google Scholar 

  • Ruderman NB, Park H, Kaushik VK, Dean D, Constant S, Prentki M, Saha AK (2003) AMPK as a metabolic switch in rat muscle, liver and adipose tissue after exercise. Acta Physiol Scand 178:435–442

    Article  CAS  PubMed  Google Scholar 

  • Rupnick MA, Panigrahy D, Zhang CY, Dallabrida SM, Lowell BB, Langer R, Folkman MJ (2002) Adipose tissue mass can be regulated through the vasculature. Proc Natl Acad Sci U S A 99:10730–10735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sahebkar A (2013) Why it is necessary to translate curcumin into clinical practice for the prevention and treatment of metabolic syndrome? Biofactors 39:197–208

    Article  CAS  PubMed  Google Scholar 

  • Scaltriti M, Baselga J (2006) The epidermal growth factor receptor pathway: a model for targeted therapy. Clin Cancer Res 12:5268–5272

    Article  CAS  PubMed  Google Scholar 

  • Schaaf C, Shan B, Onofri C, Stalla GK, Arzt E, Schilling T, Perone MJ, Renner U (2010) Curcumin inhibits the growth, induces apoptosis and modulates the function of pituitary folliculostellate cells. Neuroendocrinology 91:200–210

    Article  CAS  PubMed  Google Scholar 

  • Schultz JE (2002) FGF and the cardiovascular system in 45-66in. In: Cuevas P (ed) Fibroblast growth factors in the cardiovascular system, vol I. Holzapfel Publishers, Munich, pp 45–66

    Google Scholar 

  • Semenza GL (2003) Targeting HIF-1 for cancer therapy. Nat Rev Cancer 3:721–732

    Google Scholar 

  • Semenza GL (2007) Evaluation of HIF-1 inhibitors as anticancer agents. Drug Discov Today 12:853–859

    Article  CAS  PubMed  Google Scholar 

  • Shalaby F, Rossant J, Yamaguchi TP, Gertsenstein M, Wu XF, Breitman ML, Schuh AC (1995a) Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 376:62–66

    Article  CAS  PubMed  Google Scholar 

  • Shalaby F, Rossant J, Yamaguchi TP, Gertsenstein M, Wu XF, Breitman ML, Schuh AC (1995b) Failure of blood island formation and vasculogenesis in Flk-1-deficient mice. Nature 376:62–66

    Article  CAS  PubMed  Google Scholar 

  • Shan B, Schaaf C, Schmidt A, Lucia K, Buchfelder M, Losa M, Kuhlen D, Kreutzer J, Perone MJ, Arzt E, Stalla GK, Renner U (2012) Curcumin suppresses HIF1A synthesis and VEGFA release in pituitary adenomas. J Endocrinol 214:389–398

    Article  CAS  PubMed  Google Scholar 

  • Sharma S, Kulkarni SK, Agrewala JN, Chopra K (2006) Curcumin attenuates thermal hyperalgesia in a diabetic mouse model of neuropathic pain. Eur J Pharmacol 536:256–261

    Article  CAS  PubMed  Google Scholar 

  • Shehzad A, Lee J, Lee YS (2013) Curcumin in various cancers. Biofactors 39:56–68

    Article  CAS  PubMed  Google Scholar 

  • Shin DH, Seo EY, Pang B, Nam JH, Kim HS, Kim WK, Kim SJ (2011) Inhibition of Ca(2+)-release-activated Ca2+ channel (CRAC) and K(+) channels by curcumin in Jurkat-T cells. J Pharmacol Sci 115:144–154

    Article  CAS  PubMed  Google Scholar 

  • Shin DH, Nam JH, Lee ES, Zhang Y, Kim SJ (2012) Inhibition of Ca2+ release-activated Ca(2+) channel (CRAC) by curcumin and caffeic acid phenethyl ester (CAPE) via electrophilic addition to a cysteine residue of Orai1. Biochem Biophys Res Commun 428:56–61

    Article  CAS  PubMed  Google Scholar 

  • Shishodia S, Singh T, Chaturvedi MM (2007) Modulation of transcription factors by curcumin. Adv Exp Med Biol 595:127–148

    Article  PubMed  Google Scholar 

  • Sikaris KA (2004) The clinical biochemistry of obesity. Clin Biochem Rev 25:165–181

    PubMed  PubMed Central  Google Scholar 

  • Sikora E, Scapagnini G, Barbagallo M (2010) Curcumin, inflammation, ageing and age-related diseases. Immun Ageing 7:1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Squires MS, Hudson EA, Howells L, Sale S, Houghton CE, Jones JL, Fox LH, Dickens M, Prigent SA, Manson MM (2003) Relevance of mitogen activated protein kinase (MAPK) and phosphotidylinositol-3-kinase/protein kinase B (PI3K/PKB) pathways to induction of apoptosis by curcumin in breast cells. Biochem Pharmacol 65:361–376

    Article  CAS  PubMed  Google Scholar 

  • Suarez S, Ballmer-Hofer K (2001a) VEGF transiently disrupts gap junctional communication in endothelial cells. J Cell Sci 114:1229–1235

    CAS  PubMed  Google Scholar 

  • Suarez S, Ballmer-Hofer K (2001b) VEGF transiently disrupts gap junctional communication in endothelial cells. J Cell Sci 114:1229–1235

    CAS  PubMed  Google Scholar 

  • Taheri S, Lin L, Austin D, Young T, Mignot E (2004) Short sleep duration is associated with reduced leptin, elevated ghrelin, and increased body mass index. PLoS Med 1:e62

    Google Scholar 

  • Tajik H, Tamaddonfard E, Hamzeh-Gooshchi N (2008) The effect of curcumin (active substance of turmeric) on the acetic acid-induced visceral nociception in rats. Pak J Biol Sci 11:312–314

    Article  CAS  PubMed  Google Scholar 

  • Tan C, Zhang L, Cheng X, Lin XF, Lu RR, Bao JD, Yu HX (2014) Exp Biol Med (Maywood). pii: 1535370214555665 [Epub ahead of print]

    Google Scholar 

  • Thomas SL, Zhong D, Zhou W, Malik S, Liotta D, Snyder JP, Hamel E, Giannakakou P (2008) EF24, a novel curcumin analog, disrupts the microtubule cytoskeleton and inhibits HIF-1. Cell Cycle 7:2409–2417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tilg H, Moschen AR (2006) Adipocytokines: mediators linking adipose tissue, inflammation and immunity. Nat Rev Immunol 6:772–783

    Article  CAS  PubMed  Google Scholar 

  • Turner CA, Watson SJ, Akil H (2012) The fibroblast growth factor family: neuromodulation of affective behavior. Neuron 76:160–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ueki M, Ueno M, Morishita J, Maekawa N (2013) Curcumin ameliorates cisplatin-induced nephrotoxicity by inhibiting renal inflammation in mice. J Biosci Bioeng 115:547–551

    Article  CAS  PubMed  Google Scholar 

  • Vergaño-Vera E, Méndez-Gómez HR, Hurtado-Chong A, Cigudosa JC, Vicario-Abejón C (2009) Fibroblast growth factor-2 increases the expression of neurogenic genes and promotes the migration and differentiation of neurons derived from transplanted neural stem/progenitor cells. Neuroscience 162:39–54

    Article  PubMed  CAS  Google Scholar 

  • Verheul HM, Pinedo HM (2007) Possible molecular mechanisms involved in the toxicity of angiogenesis inhibition. Nat Rev Cancer 7:475–485

    Article  CAS  PubMed  Google Scholar 

  • Viacava P, Gasperi M, Acerbi G, Manetti L, Cecconi E, Bonadio AG, Naccarato AG, Acerbi F, Parenti G, Lupi I, Genovesi M, Martino E (2003) Microvascular density and vascular endothelial growth factor expression in normal pituitary tissue and pituitary adenomas. J Endocrinol Invest 26:23–28

    Article  CAS  PubMed  Google Scholar 

  • Voros G, Maquoi E, Demeulemeester D, Clerx N, Collen D, Lijnen HR (2005) Modulation of angiogenesis during adipose tissue development in murine models of obesity. Endocrinology 146:4545–4554

    Article  CAS  PubMed  Google Scholar 

  • Wang GL, Semenza GL (1993) Characterization of hypoxia-inducible factor 1 and regulation of DNA binding activity by hypoxia. J Biol Chem 268:21513–21518

    CAS  PubMed  Google Scholar 

  • Wang GL, Jiang BH, Rue EA, Semenza GL (1995) Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A 92:5510–5514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W, Bernard K, Li G, Kirk KL (2007) Curcumin opens cystic fibrosis transmembrane conductance regulator channels by a novel mechanism that requires neither ATP binding nor dimerization of the nucleotide-binding domains. J Biol Chem 282:4533–4544

    Article  CAS  PubMed  Google Scholar 

  • Waseem M, Parvez SS (2013) Mitochondrial dysfunction mediated cisplatin induced toxicity: modulatory role of curcumin. Food Chem Toxicol 53:334–342

    Article  CAS  PubMed  Google Scholar 

  • Wilson PD (2004) Polycystic kidney disease. N Engl J Med 350:151–164

    Article  CAS  PubMed  Google Scholar 

  • Xia G, Kumar SR, Hawes D, Cai J, Hassanieh L, Groshen S, Zhu S, Masood R, Quinn DI, Broek D, Stein JP, Gill PS (2006) Expression and significance of vascular endothelial growth factor receptor 2 in bladder cancer. J Urol 175:1245–1252

    Article  CAS  PubMed  Google Scholar 

  • Yarden Y, Sliwkowski MX (2001) Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2:127–137

    Article  CAS  PubMed  Google Scholar 

  • Yeon KY, Kim SA, Kim YH, Lee MK, Ahn DK, Kim HJ, Kim JS, Jung SJ, Oh SB (2010) Curcumin produces an antihyperalgesic effect via antagonism of TRPV1. J Dent Res 89:170–174

    Article  CAS  PubMed  Google Scholar 

  • Yu PJ, Ferrari G, Galloway AC, Mignatti P, Pintucci G (2007) Basic fibroblast growth factor (FGF-2): the high molecular weight forms come of age. J Cell Biochem 100:1100–1108

    Article  CAS  PubMed  Google Scholar 

  • Yu YC, Miki H, Nakamura Y, Hanyuda A, Matsuzaki Y, Abe Y, Yasui M, Tanaka K, Hwang TC, Bompadre SG, Sohma Y (2011) Curcumin and genistein additively potentiate G551D-CFTR. J Cyst Fibros 10:243–252

    Article  CAS  PubMed  Google Scholar 

  • Yu L, Yi J, Ye G, Zheng Y, Song Z, Yang Y, Song Y, Wang Z, Bao Q (2012) Effects of curcumin on levels of nitric oxide synthase and AQP-4 in a rat model of hypoxia-ischemic brain damage. Brain Res 1475:88–95

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Chen Q, Wang Y, Peng W, Cai H (2014) Effects of curcumin on ion channels and transporters. Front Physiol 5:94

    PubMed  PubMed Central  Google Scholar 

  • Zhen L, Fan D, Yi X, Cao X, Chen D, Wang L (2014) Curcumin inhibits oral squamous cell carcinoma proliferation and invasion via EGFR signaling pathways. Int J Clin Exp Pathol 7:6438–6446

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Farooqui, A.A. (2016). Effect of Curcumin on Growth Factors and Their Receptors, Ion Channels, and Transporters in the Visceral Organs and the Brain. In: Therapeutic Potentials of Curcumin for Alzheimer Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-15889-1_5

Download citation

Publish with us

Policies and ethics