Skip to main content

Metabolism, Bioavailability, Biochemical Effects of Curcumin in Visceral Organs and the Brain

  • Chapter
  • First Online:
Therapeutic Potentials of Curcumin for Alzheimer Disease
  • 1168 Accesses

Abstract

It is well known that curcumin produces antioxidant, anti-inflammatory, anticancer, antiviral, and antiarthritic properties. The poor bioavailability of curcumin is the major hurdle for its more widespread use in animals and humans. However, complexation and encapsulation of curcumin into liposomes, cyclodextrin, curcumin conjugate with PLGA, complexation with phospholipids, and synthesis of curcumin analogs have made it easy to bypass this problem. New ways of delivering curcumin have resulted in increased absorption and delivery of curcumin to various body tissues including brain. The underlying mechanisms of these effects are diverse and appear to involve the regulation of various molecular targets, including transcription factors (NF-κB and HIF-1), growth factors (vascular endothelial cell growth factor), inflammatory cytokines (TNF-α, IL1, and IL-6), and enzymes (protein kinases (MAPK, Akt, COX-2, and 5-LOX).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe Y, Hashimoto S, Horie T (1999) Curcumin inhibition of inflammatory cytokine production by human peripheral blood monocytes and alveolar macrophages. Pharmacol Res 39:41–47

    Article  CAS  PubMed  Google Scholar 

  • Adams JM II, Pratipanawatr T, Berria R, Wang E, DeFronzo RA, Sullards MC, Mandarino LJ (2004) Ceramide content is increased in skeletal muscle from obese insulin-resistant humans. Diabetes 53:25–31

    Article  CAS  PubMed  Google Scholar 

  • Adams SH, Hoppel CL, Lok KH, Zhao L, Wong SW, Minkler PE, Hwang DH, Newman JW, Garvey WT (2009) Plasma acylcarnitine profiles suggest incomplete long-chain fatty acid beta-oxidation and altered tricarboxylic acid cycle activity in type 2 diabetic African-American women. J Nutr 139:1073–1081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aggarwal BB, Kumar A, Bharti AC (2003) Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Res 23:363–398

    CAS  PubMed  Google Scholar 

  • Aggarwal S, Takada Y, Singh S, Myers JN, Aggarwal BB (2004) Inhibition of growth and survival of human head and neck squamous cell carcinoma cells by curcumin via modulation of nuclear factor-kappaB signaling. Int J Cancer 111:679–692

    Article  CAS  PubMed  Google Scholar 

  • Aggarwal BB, Deb L, Prasad S (2014) Curcumin differs from tetrahydrocurcumin for molecular targets, signaling pathways and cellular responses. Molecules 20:185–205

    Article  PubMed  CAS  Google Scholar 

  • Ak T, Gülçin I (2008) Antioxidant and radical scavenging properties of curcumin. Chem Biol Interact 174:27–37

    Article  CAS  PubMed  Google Scholar 

  • Amor S, Puentes F, Baker D, van der Valk P (2010) Inflammation in neurodegenerative diseases. Immunology 129:154–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB (2007) Bioavailability of curcumin: problems and promises. Mol Pharm 4:807–818

    Article  CAS  PubMed  Google Scholar 

  • Anand P, Thomas SG, Kunnumakkara AB, Sundaram C, Harikumar KB, Sung B, Tharakan ST, Misra K, Priyadarsini IK, Rajasekharan KN, Aggarwal BB (2008a) Biological activities of curcumin and its analogues (Congeners) made by man and Mother Nature. Biochem Pharmacol 76:1590–1611

    Article  CAS  PubMed  Google Scholar 

  • Anand P, Kunnumakkara AB, Sundaram C, Harikumar KB, Tharakan ST, Lai OS, Sung B, Aggarwal BB (2008b) Cancer is a preventable disease that requires major lifestyle changes. Pharm Res 25:2097–2116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anand P, Nair HB, Sung B, Kunnumakkara AB, Yadav VR, Tekmal RR, Aggarwal BB (2010) Design of curcumin-loaded PLGA nanoparticles formulation with enhanced cellular uptake, and increased bioactivity in vitro and superior bioavailability in vivo. Biochem Pharmacol 79:330–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aoyagi S, Yamazaki M, Miyasaka T (2001) Clarification of enhanced hydroxyl radical production in Fenton reaction with ATP/ADP based on luminol chemiluminescence. J Chem Eng Jpn 34:956–959

    Article  CAS  Google Scholar 

  • Arcaro CA, Gutierres CA, Assis RP, Moreira TF, Costa PI, Baviera AM, Brunetti IL (2014) Piperine, a natural bioenhancer, nullifies the antidiabetic and antioxidant activities of curcumin in streptozotocin-diabetic rats. PLoS One 9, e113993

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Arora V, Kuhad A, Tiwari V, Chopra K (2011) Curcumin ameliorates reserpine-induced pain-depression dyad: behavioural, biochemical, neurochemical and molecular evidences. Psychoneuroendocrinology 36:1570–1581

    Article  CAS  PubMed  Google Scholar 

  • Aruoma OI, Halliwell B, Gajewski E, Dizdaroglu M (1991) Copper-ion-dependent damage to the bases in DNA in the presence of hydrogen peroxide. Biochem J 273:601–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asai A, Miyazawa T (2000) Occurrence of orally administered curcuminoid as glucuronide and glucuronide/sulfate conjugates in rat plasma. Life Sci 67:2785–2793

    Article  CAS  PubMed  Google Scholar 

  • Atal CK, Dubey RK, Singh JJ (1985) Biochemical basis of enhanced drug bioavailability by piperine: evidence that piperine is a potent inhibitor of drug metabolism. J Pharmacol Exp Ther 232:258–262

    CAS  PubMed  Google Scholar 

  • Bae YS, Kang SW, Seo MS, Baines IC, Tekle E, Chock PB, Rhee SG (1997) Epidermal growth factor (EGF)-induced generation of hydrogen peroxide. Role in EGF receptor-mediated tyrosine phosphorylation. J Biol Chem 272:217–221

    Article  CAS  PubMed  Google Scholar 

  • Balasubramanyam K, Varier RA, Altaf M, Swaminathan V, Siddappa NB, Ranga U, Kundu TK (2004) Curcumin, a novel p300/CREB-binding protein-specific inhibitor of acetyltransferase, represses the acetylation of histone/nonhistone proteins and histone acetyltransferase-dependent chromatin transcription. J Biol Chem 279:51163–51171

    Article  CAS  PubMed  Google Scholar 

  • Balducci C, Mancini S, Minniti S, La Vitola P, Zotti M, Sancini G, Mauri M, Cagnotto A, Colombo L, Fiordaliso F, Grigoli E, Salmona M, Snellman A, Haaparanta-Solin M, Forloni G, Masserini M, Re F (2014) Multifunctional liposomes reduce brain β-amyloid burden and ameliorate memory impairment in Alzheimer’s disease mouse models. J Neurosci 34:14022–14031

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barbusinski K (2009) Fenton reaction—controversy concerning the chemistry. Ecol Chem Eng 16:347–358

    CAS  Google Scholar 

  • Barnham KJ, Masters CL, Bush AI (2004) Neurodegenerative diseases and oxidatives stress. Nat Rev Drug Discov 3:205–214

    Article  CAS  PubMed  Google Scholar 

  • Barzegar A, Moosavi-Movahedi AA (2011) Intracellular ROS protection efficiency and free radical-scavenging activity of curcumin. PLoS One 6, e26012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basuli D, Stevens RG, Torti FM, Torti SV (2014) Epidemiological associations between iron and cardiovascular disease and diabetes. Front Pharmacol 5:117

    PubMed  PubMed Central  Google Scholar 

  • Begum AN, Jones MR, Lim GP, Morihara T, Kim P, Heath DD, Rock CL, Pruitt MA, Yang F, Hudspeth B, Hu S, Faull KF, Teter B, Cole GM, Frautschy SA (2008) Curcumin structure function, bioavailability, and efficacy in models of neuroinflammation and Alzheimer’s disease. J Pharmacol Exp Ther 326:196–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernabe-Pineda M, Ramirez-Silva MT, Romero-Romo MA, Gonzalez-Vergara E, Rojas-Hernandez A (2004) Spectrophotometric and electrochemical determination of the formation constants of the complexes Curcumin–Fe(III)–water and Curcumin– Fe(II)–water. Spectrochim Acta A Mol Biomol Spectrosc 60:1105–1113

    Article  PubMed  CAS  Google Scholar 

  • Bertolasi V, Ferretti V, Gilli P, Yao X, Li CJ (2008) Substituent effects on keto-enol tautomerization of [small beta]-diketones from X-ray structural data and DFT calculations. New J Chem 32:694–704

    Article  CAS  Google Scholar 

  • Bisht S, Maitra A (2009) Systemic delivery of curcumin: 21st century solutions for an ancient conundrum. Curr Drug Discov Technol 6:192–199

    Article  CAS  PubMed  Google Scholar 

  • Broom DC, Samad TA, Kohno T, Tegeder I, Geisslinger G, Woolf CJ (2004) Cyclooxygenase 2 expression in the spared nerve injury model of neuropathic pain. Neuroscience 124:891–900

    Article  CAS  PubMed  Google Scholar 

  • Brouet I, Ohshima H (1995) Curcumin, an anti-tumour promoter and anti-inflammatory agent, inhibits induction of nitric oxide synthase in activated macrophages. Biochem Biophys Res Commun 206:533–540

    Article  CAS  PubMed  Google Scholar 

  • Bush AI (2013) The metal theory of Alzheimer’s disease. J Alzheimer’s Dis 33(Suppl 1):S277–S281

    Google Scholar 

  • Cameron HA, McKay RD (1999) Restoring production of hippocampal neurons in old age. Nat Neurosci 2:894–897

    Article  CAS  PubMed  Google Scholar 

  • Chan JM, Zhang L, Yuet KP, Liao G, Rhee J-W, Langer R, Farokhzad OC (2009) PLGA–lecithin–PEG core–shell nanoparticles for controlled drug delivery. Biomaterials 30:1627–1634

    Article  CAS  PubMed  Google Scholar 

  • Chen A, Xu J, Johnson AC (2006) Curcumin inhibits human colon cancer cell growth by suppressing gene expression of epidermal growth factor receptor through reducing the activity of the transcription factor Egr-1. Oncogene 25:278–287

    PubMed  Google Scholar 

  • Cheng AL, Hsu CH, Lin JK, Hsu MM, Ho YF, Shen TS, Ko JY, Lin JT, Lin BR (2001) Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Res 21:2895–2900

    CAS  PubMed  Google Scholar 

  • Cheng KK, Yeung CF, Ho SW, Chow SF, Chow AH, Baum L (2013a) Highly stabilized curcumin nanoparticles tested in an in vitro blood-brain barrier model and in Alzheimer’s disease Tg2576 mice. AAPS J 15:324–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng KW, Wong CC, Mattheolabakis G, Xie G, Huang L, Rigas B (2013b) Curcumin enhances the lung cancer chemopreventive efficacy of phospho-sulindac by improving its pharmacokinetics. Int J Oncol 43:895–902

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chin D, Huebbe P, Frank J, Rimbach G, Pallauf K (2014) Curcumin may impair iron status when fed to mice for six months. Redox Biol 2:563–569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi JH, Yoo KY, Lee CH, Park OK, Yan BC, Li H, Hwang IK, Park JH, Kim SK, Won MH (2010) Comparison of newly generated doublecortin-immunoreactive neuronal progenitors in the main olfactory bulb among variously aged gerbils. Neurochem Res 35:1599–1608

    Article  CAS  PubMed  Google Scholar 

  • Chougala MB, Bhaskar JJ, Rajan MGR, Salimath PV (2012) Effect of curcumin and quercetin on lysosomal enzyme activities in streptozotocin-induced diabetic rats. Clin Nutr 31:749–755

    Article  CAS  PubMed  Google Scholar 

  • Chu LF, Angst MS, Clark D (2008) Opioid-induced hyperalgesia in humans: molecular mechanisms and clinical considerations. Clin J Pain 24:479–496

    Article  PubMed  Google Scholar 

  • Clark CA, McEachern MD, Shah SH, Rong Y, Rong X, Smelley CL, Caldito GC, Abreo FW, Nathan CO (2010) Curcumin inhibits carcinogen and nicotine-induced mammalian target of rapamycin pathway activation in head and neck squamous cell carcinoma. Cancer Prev Res (Phila) 3:1586–1595

    Article  CAS  Google Scholar 

  • Clevers H, Loh KM, Nusse R (2014) Stem cell signaling. An integral program for tissue renewal and regeneration: Wnt signaling and stem cell control. Science 346:1248012

    Google Scholar 

  • Cohen-Sela E, Chorny M, Koroukhov N, Danenberg HD, Golomb G (2009) A new double emulsion solvent diffusion technique for encapsulating hydrophilic molecules in PLGA nanoparticles. J Control Release 133:90–95

    Article  CAS  PubMed  Google Scholar 

  • Cornago P, Claramunt RM, Bouissane L, Alkorta I, Elguero J (2008) A study of the tautomerism of beta-dicarbonyl compounds with special emphasis on curcuminoids. Tetrahedron 64:8089–8094

    Article  CAS  Google Scholar 

  • Cuadrado A, Moreno-Murciano P, Pedraza-Chaverri J (2009) The transcription factor Nrf2 as a new therapeutic target in Parkinson’s disease. Expert Opin Ther Targets 13:319–329

    Article  CAS  PubMed  Google Scholar 

  • Deng T, Sieglaff DH, Zhang A et al (2011) A peroxisome proliferator-activated receptor γ (PPARγ)/PPARγ coactivator 1β autoregulatory loop in adipocyte mitochondrial function. J Biol Chem 286:30723–30731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dickinson BC, Peltier J, Stone D, Schaffer DV, Chang CJ (2011) Nox2 redox signaling maintains essential cell populations in the brain. Nat Chem Biol 7:106–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doggui S, Sahni JK, Arseneault M, Dao L, Ramassamy C (2012) Neuronal uptake and neuroprotective effect of curcumin-loaded PLGA nanoparticles on the human SK-N-SH cell line. J Alzheimers Dis 30:377–392

    CAS  PubMed  Google Scholar 

  • Dong Y, Benveniste EN (2001) Immune function of astrocytes. Glia 36:180–190

    Article  CAS  PubMed  Google Scholar 

  • Duman RS (2004) Depression: a case of neuronal life and death? Biol Psychiatry 56:140–145

    Article  PubMed  Google Scholar 

  • Duncan R, Gaspar R (2011) Nanomedicine (s) under the microscope. Mol Pharm 8:2101e41

    Google Scholar 

  • El-Azab MF, Attia FM, El-Mowafy AM (2011) Novel role of curcumin combined with bone marrow transplantation in reversing experimental diabetes: effects on pancreatic islet regeneration, oxidative stress, and inflammatory cytokines. Eur J Pharmacol 658:41–48

    Article  CAS  PubMed  Google Scholar 

  • El-Moselhy MA, Taye A, Sharkawi SS, El-Sisi SFI, Ahmed AF (2011) The antihyperglycemic effect of curcumin in high fat diet fed rats. Role of TNF-α and free fatty acids. Food Chem Toxicol 49:1129–1140

    Article  CAS  PubMed  Google Scholar 

  • Emerit J, Edeas M, Bricaire F (2004) Neurodegenerative diseases and oxidative stress. Biomed Pharmacother 58:39–46

    Article  CAS  PubMed  Google Scholar 

  • Farombi EO, Shrotriya S, Na HK, Kim SH, Surh YJ (2008) Curcumin attenuates dimethylnitrosamine-induced liver injury in rats through Nrf2-mediated induction of heme oxygenase-1. Food Chem Toxicol 46:1279–1287

    Article  CAS  PubMed  Google Scholar 

  • Farooqui AA (2010) Neurochemical aspects of neurotraumatic and neurodegenerative diseases. Springer, New York

    Book  Google Scholar 

  • Farooqui AA (2013) Metabolic syndrome: an important risk factor for stroke, Alzheimer, and depression. Springer, New York

    Book  Google Scholar 

  • Farooqui AA (2014) Inflammation and oxidative stress in neurological disorders. Springer, New York

    Book  Google Scholar 

  • Farooqui AA (2015) High calorie diet and the human brain: consequences of long term consumption. Springer, Switzerland

    Book  Google Scholar 

  • Farooqui AA, Horrock LA (2007) Glycerophospholipids in brain. Springer, New York

    Book  Google Scholar 

  • Farooqui AA, Ong WY, Horrocks LA (2008) Neurochemical aspects of excitotoxicity. Springer, New York

    Google Scholar 

  • Farooqui AA, Farooqui T, Panza F, Frisardi V (2012) Metabolic syndrome as a risk factor for neurological disorders. Cell Mol Life Sci 69:741–762

    Article  CAS  PubMed  Google Scholar 

  • Frautschy SA, Hu W, Kim P, Miller SA, Chu T, Harris-White ME, Cole GM (2001) Phenolic anti-inflammatory antioxidant reversal of Abeta-induced cognitive deficits and neuropathology. Neurobiol Aging 22:993–1005

    Article  CAS  PubMed  Google Scholar 

  • Fujiwara H, Hosokawa M, Zhou X, Fujimoto S, Fukuda K, Toyoda K, Nishi Y, Fujita Y, Yamada K, Yamada Y, Seino Y, Inagaki N (2008) Curcumin inhibits glucose production in isolated mice hepatocytes. Diabetes Res Clin Pract 80:185–191

    Article  CAS  PubMed  Google Scholar 

  • Gaetke LM, Chow-Johnson HS, Chow CK (2014) Copper: Toxicological relevance and mechanisms. Arch Toxicol 88:1929–1938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Garcia A, Rodriguez-Rocha H, Madayiputhiya N, Pappa A, Panayiotidis MI, Franco R (2012) Biomarkers of protein oxidation in human disease. Curr Mol Med 12:681–697

    Article  CAS  PubMed  Google Scholar 

  • Garg AD, Kaczmarek A, Krysko O, Vandenabeele P, Krysko DV, Agostinis P (2012) ER stress-induced inflammation: does it aid or impede disease progression? Trends Mol Med 18:589–598

    Article  CAS  PubMed  Google Scholar 

  • Genheden M, Kenney JW, Johnston HE, Manousopoulou A, Garbis SD, Proud CG (2015) BDNF stimulation of protein synthesis in cortical neurons requires the MAP kinase-interacting kinase MNK1. J Neurosci 35:972–984

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ghalandarlaki N, Alizadeh AM, Ashkani-Esfahani S (2014) Nanotechnology-applied curcumin for different diseases therapy. Biomed Res Int 2014:394264

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ghorbani Z, Hekmatdoost A, Mirmiran P (2014) Anti-hyperglycemic and insulin sensitizer effects of turmeric and its principle constituent curcumin. Int J Endocrinol Metab 12, e18081

    Article  PubMed  PubMed Central  Google Scholar 

  • Gispen WH, Biessels G-J (2000) Cognition and synaptic plasticity in diabetes mellitus. Trends Neurosci 23:542–549

    Article  CAS  PubMed  Google Scholar 

  • Goel A, Kunnumakkara AB, Aggarwal BB (2008) Curcumin as “Curecumin”: from kitchen to clinic. Biochem Pharmacol 75:787–809

    Article  CAS  PubMed  Google Scholar 

  • Gota VS, Maru GB, Soni TG, Gandhi TR, Kochar N, Agarwal MG (2010) Safety and pharmacokinetics of a solid lipid curcumin particle formulation in osteosarcoma patients and healthy volunteers. J Agric Food Chem 58:2095–2099

    Article  CAS  PubMed  Google Scholar 

  • Gozzelino R, Arosio P (2015) The importance of iron in pathophysiologic conditions. Front Pharmacol 6:26

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gururaj AE, Belakavadi M, Venkatesh DA, Marme D, Salimath BP (2002) Molecular mechanisms of anti-angiogenic effect of curcumin. Biochem Biophys Res Commun 297:934–942

    Article  CAS  PubMed  Google Scholar 

  • Hasima N, Aggarwal BB (2012) Cancer-linked targets modulated by curcumin. Int J Biochem Mol Biol 3:328–351

    CAS  PubMed  PubMed Central  Google Scholar 

  • He HJ, Wang GY, Gao Y, Ling WH, Yu ZW, Jin TR (2012) Curcumin attenuates Nrf2 signaling defect, oxidative stress in muscle and glucose intolerance in high fat diet-fed mice. World J Diabetes 3:94–104

    Article  PubMed  PubMed Central  Google Scholar 

  • Hentze MW, Muckenthaler MU, Andrews NC (2004) Balancing acts: molecular control of mammalian iron metabolism. Cell 117:285–297

    Article  CAS  PubMed  Google Scholar 

  • Hoehle SI, Pfeiffer E, Metzler M (2007) Glucuronidation of curcuminoids by human microsomal and recombinant UDP-glucuronosyltransferases. Mol Nutr Food Res 51:932–938

    Article  CAS  PubMed  Google Scholar 

  • Holland WL, Brozinick JT, Wang LP, Hawkins ED, Sargent KM, Liu Y, Narra K, Hoehn KL, Knotts TA, Siesky A, Nelson DH, Karathanasis SK, Fontenot GK, Birnbaum MJ, Summers SA (2007) Inhibition of ceramide synthesis ameliorates glucocorticoid-, saturated-fat- and obesity-induced insulin resistance. Cell Metab 5:167–179

    Article  CAS  PubMed  Google Scholar 

  • Hu X, Huang F, Szymusiak M, Liu Y, Wang ZJ (2015) Curcumin attenuates opioid tolerance and dependence by inhibiting Ca2+/calmodulin-dependent protein kinase II α activity. J Pharmacol Exp Ther 352:420–428

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang MT, Lou YR, Xie JG, Ma W, Lu YP, Yen P, Zhu BT, Newmark H, Ho CT (1998) Effect of dietary curcumin and dibenzoylmethane on formation of 7,12-dimethylbenz[a]anthracene-induced mammary tumors and lymphomas/leukemias in Sencar mice. Carcinogenesis 19:1697–1700

    Article  CAS  PubMed  Google Scholar 

  • Hussein HK, Abu-Zinadah OA (2010) Antioxidant effect of curcumin extracts in induced diabetic wister rats. Inter J Zool Res 13:266–276

    Google Scholar 

  • Itani SI, Ruderman NB, Schmieder F, Boden G (2002) Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C, and IkappaB-alpha. Diabetes 51:2005–2011

    Article  CAS  PubMed  Google Scholar 

  • Jain SK, Rains J, Croad J, Larson B, Jones K (2009) Curcumin supplementation lowers TNF-α, IL-6, IL-8, and MCP-1 secretion in high glucose-treated cultured monocytes and blood levels of TNF-α, IL-6, MCP-1, glucose, and glycosylated hemoglobin in diabetic rats. Antioxid Redox Signal 11:241–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jenner P (1989) Clues to the mechanism underlying dopamine cell death in Parkinson’s disease. J Neurol Neurosurg Psychiatry 52:22–28

    Article  PubMed Central  Google Scholar 

  • Jeong GS, Oh GS, Pae HO, Jeong SO, Kim YC, Shin MK, Seo BY, Han SY, Lee HS, Jeong JG, Koh JS, Chung HT (2006) Comparative effects of curcuminoids on endothelial heme oxygenase-1 expression: ortho-methoxy groups are essential to enhance heme oxygenase activity and protection. Exp Mol Med 38:393–400

    Article  CAS  PubMed  Google Scholar 

  • Jeong SO, Oh GS, Ha HY, Soon Koo B, Sung Kim H, Kim YC, Kim EC, Lee KM, Chung HT, Pae HO (2009) Dimethoxycurcumin, a synthetic curcumin analogue, induces heme oxygenase-1 expression through Nrf2 activation in RAW264.7 macrophages. J Clin Biochem Nutr 44:79–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiao Y, Wilkinson J, Di X, Wang W, Hatcher H, Kock ND, D’Agostino R Jr (2009) Curcumin, a cancer chemopreventive and chemotherapeutic agent, is a biologically active iron chelator. Blood 113:462–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones PA (2002) DNA methylation and cancer. Oncogene 21:5358–5360

    Article  CAS  PubMed  Google Scholar 

  • Joshi G, Johnson JA (2012) The Nrf2-ARE pathway: a valuable therapeutic target for the treatment of neurodegenerative diseases. Recent Pat CNS Drug Discov 7:218–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jurenka JS (2009) Anti-inflammatory properties of curcumin, a major constituent of Curcuma longa: a review of preclinical and clinical research. Altern Med Rev 14:141–153

    PubMed  Google Scholar 

  • Kakkar V, Singh S, Singla D, Sahwney S, Chauhan AS, Singh G (2010) Pharmacokinetic applicability of a validated liquid chromatography tandem mass spectroscopy method for orally administered curcumin loaded solid lipid nanoparticles to rats. J Chromatogr B Analyt Technol Biomed Life Sci 878:3427–3431

    Article  CAS  PubMed  Google Scholar 

  • Kanski J, Aksenova M, Stoyanova A, Butterfield DA (2002) Ferulic acid antioxidant protection against hydroxyl and peroxyl radical oxidation in synaptosomal and neuronal cell culture systems in vitro: structure-activity studies. J Nutr Biochem 13:273–281

    Article  CAS  PubMed  Google Scholar 

  • Khalil NM, do Nascimento TC, Casa DM, Dalmolin LF, de Mattos AC, Hoss I, Romano MA, Mainardes RM (2013) Pharmacokinetics of curcumin-loaded PLGA and PLGA-PEG blend nanoparticles after oral administration in rats. Colloids Surf B Biointerfaces 101:353–360

    Google Scholar 

  • Kim SJ, Son TG, Park HR, Park M, Kim MS, Kim HS, Chung HY, Mattson MP, Lee J (2008) Curcumin stimulates proliferation of embryonic neural progenitor cells and neurogenesis in the adult hippocampus. J Biol Chem 283:14497–14505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim T, Davis J, Zhang AJ, He X, Mathews ST (2009) Curcumin activates AMPK and suppresses gluconeogenic gene expression in hepatoma cells. Biochem Biophys Res Commun 388:377–382

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Naidu PS, Seghal N, Padi SS (2007a) Effect of curcumin on intracerebroventricular colchicine-induced cognitive impairment and oxidative stress in rats. J Med Food 10:486–494

    Article  CAS  PubMed  Google Scholar 

  • Kumar P, Padi SS, Naidu PS, Kumar A (2007b) Possible neuroprotective mechanisms of curcumin in attenuating 3-nitropropionic acid-induced neurotoxicity. Methods Find Exp Clin Pharmacol 29:19–25

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Dogra S, Prakash A (2009) Protective effect of curcumin (Curcuma longa), against aluminium toxicity: possible behavioral and biochemical alterations in rats. Behav Brain Res 205:384–390

    Article  CAS  PubMed  Google Scholar 

  • Lammers T, Aime S, Hennink WE, Storm G, Kiessling F (2011) Theranostic nanomedicine. Acc Chem Res 44:1029e38

    Article  CAS  Google Scholar 

  • Lavoie S, Chen Y, Dalton TP, Gysin R, Cuénod M, Steullet P, DOKQ (2009) Curcumin, quercetin, and tBHQ modulate glutathione levels in astrocytes and neurons: importance of the glutamate cysteine ligase modifier subunit. J Neurochem 108:1410–1422

    Article  CAS  PubMed  Google Scholar 

  • Letelier ME, Faúndez M, Jara-Sandoval J, Molina-Berríos A, Cortés-Troncoso J, Aracena-Parks P, Marín-Catalán R (2009) Mechanisms underlying the inhibition of the cytochrome P450 system by copper ions. J Appl Toxicol 29:695–702

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Li J, Li S, Li Y, Wang X, Liu B, Fu Q, Ma S (2015) Curcumin attenuates glutamate neurotoxicity in the hippocampus by suppression of ER stress-associated TXNIP/NLRP3 inflammasome activation in a manner dependent on AMPK. Toxicol Appl Pharmacol 286:53–63

    Article  CAS  PubMed  Google Scholar 

  • Lichtenwalner RJ, Parent JM (2006) Adult neurogenesis and the ischemic forebrain. JCBFM 26:1–20

    CAS  Google Scholar 

  • Lieu PT, Heiskala M, Peterson PA, Yang Y (2001) The roles of iron in health and disease. Mol Aspects Med 22:1–87

    Article  CAS  PubMed  Google Scholar 

  • Lin YC, Chen HW, Kuo YC, Chang YF, Lee YJ, Hwang JJ (2010) Therapeutic efficacy evaluation of curcumin on human oral squamous cell carcinoma xenograft using multimodalities of molecular imaging. Am J Chin Med 38:343–358

    Article  CAS  PubMed  Google Scholar 

  • Lin YL, Liu YK, Tsai NM, Hsieh JH, Chen CH, Lin CM (2012) A lipo-PEG-PEI complex for encapsulating curcumin that enhances its antitumor effects on curcumin-sensitive and curcumin-resistance cells. Nanomed Nanotechnol 8:318e27

    Google Scholar 

  • Liochev SI, Fridovich I (2002) The Haber-Weiss cycle-70 years later: an alternative view. Redox Rep 7:55–57

    Article  CAS  PubMed  Google Scholar 

  • Liu A, Lou H, Zhao L, Fan P (2006) Validated LC/MS/MS assay for curcumin and tetrahydrocurcumin in rat plasma and application to pharmacokinetic study of phospholipid complex of curcumin. J Pharm Biomed Anal 40:720–727

    Article  CAS  PubMed  Google Scholar 

  • Maes M, Galecki P, Chang YS, Berk M (2011) A review on the oxidative and nitrosative stress (O&NS) pathways in major depression and their possible contribution to the (neuro)degenerative processes in that illness. Prog Neuropsychopharmacol Biol Psychiatry 35:676–692

    Article  CAS  PubMed  Google Scholar 

  • Mahesh T, Sri Balasubashini MM, Menon VP (2004) Photo-irradiated curcumin supplementation in streptozotocin-induced diabetic rats: effect on lipid peroxidation. Therapie 59:639–644

    Article  PubMed  Google Scholar 

  • Maines MD (2000) The heme oxygenase system and its functions in the brain. Cell Mol Biol 46:573–585

    CAS  PubMed  Google Scholar 

  • Marczylo TH, Verschoyle RD, Cooke DN, Morazzoni P, Steward WP, Gescher AJ (2007) Comparison of systemic availability of curcumin with that of curcumin formulated with phosphatidylcholine. Cancer Chemother Pharmacol 60:171–177

    Article  CAS  PubMed  Google Scholar 

  • Martindale JL, Holbrook NJ (2002) Cellular response to oxidative stress: signaling for suicide and survival. J Cell Physiol 192:1–15

    Article  CAS  PubMed  Google Scholar 

  • Mathew A, Fukuda T, Nagaoka Y, Hasumura T, Morimoto H, Yoshida Y, Maekawa T, Venugopal K, Kumar DS (2012) Curcumin loaded-PLGA nanoparticles conjugated with Tet-1 peptide for potential use in Alzheimer’s disease. PLoS One 7, e32616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McClure R, Yanagisawa D, Stec D, Abdollahian D, Koktysh D, Xhillari D, Jaeger R, Stanwood G, Chekmenev E, Tooyama I, Gore JC, Pham W (2015) Inhalable curcumin: offering the potential for translation to imaging and treatment of Alzheimer’s disease. J Alzheimers Dis 44:283–295

    CAS  PubMed  PubMed Central  Google Scholar 

  • Melzack R, Casey KL (1968) Sensory, motivational and central control determinants of pain: a new conceptual model. In: Kenshalo DR (ed) The skin senses. Charles C Thomas, Springfield, pp 423–443

    Google Scholar 

  • Menon VP, Sudheer AR (2007) Antioxidant and anti-inflammatory properties of curcumin. Adv Exp Med Biol 595:105–125

    Article  PubMed  Google Scholar 

  • Minghetti L, Ajmone-Cat MA, De Berardinis MA, De Simone R (2005) Microglial activation in chronic neurodegenerative diseases: roles of apoptotic neurons and chronic stimulation. Brain Res Rev 48:251–256

    Article  CAS  PubMed  Google Scholar 

  • Mittal N, Joshi R, Hota D, Chakrabarti A (2009) Evaluation of antihyperalgesic effect of curcumin on formalin-induced orofacial pain in rat. Phytother Res 23:507–512

    Article  CAS  PubMed  Google Scholar 

  • Monari M, Foschi J, Calabrese C, Liguori G, Di Febo G, Rizzello F, Gionchetti P, Trinchero A, Serrazanetti GP (2009) Implications of antioxidant enzymes in human gastric neoplasms. Int J Mol Med 24:693–700

    Article  CAS  PubMed  Google Scholar 

  • Murugan P, Pari L (2007) Influence of tetrahydrocurcumin on erythrocyte membrane bound enzymes and antioxidant status in experimental type 2 diabetic rats. J Ethnopharmacol 113:479–486

    Article  CAS  PubMed  Google Scholar 

  • National Cancer Institute (1996) Clinical development plan: curcumin. J Cell Biochem Suppl. 26:72–85

    Google Scholar 

  • Nishiyama T, Mae T, Kishida H, Tsukagawa M, Mimaki Y, Kuroda M, Sashida Y, Takahashi K, Kawada T, Nakagawa K, Kitahara M (2005) Curcuminoids and sesquiterpenoids in turmeric (Curcuma longa L.) Suppress an increase in blood glucose level in type 2 diabetic KK-Aγ mice. J Agric Food Chem 53:959–963

    Article  CAS  PubMed  Google Scholar 

  • Olivera A, Moore TW, Hu F, Brown AP, Sun A, Liotta DC, Snyder JP, Yoon Y, Shim H, Marcus AI, Miller AH, Pace TW (2012) Inhibition of the NF-κB signaling pathway by the curcumin analog, 3,5-Bis(2-pyridinylmethylidene)-4-piperidone (EF31): anti-inflammatory and anti-cancer properties. Int Immunopharmacol 12:368–377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pae HO, Kim EC, Chung HT (2008) Integrative survival response evoked by heme oxygenase-1 and heme metabolites. J Clin Biochem Nutr 42:197–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panchal HD, Vranizan K, Lee CY, Ho J, Ngai J, Timiras PS (2008) Early anti-oxidative and anti-proliferative curcumin effects on neuroglioma cells suggest therapeutic targets. Neurochem Res 33:1701–1710

    Article  CAS  PubMed  Google Scholar 

  • Park HR, Lee J (2011) Neurogenic contributions made by dietary regulation to hippocampal neurogenesis. Ann N Y Acad Sci 1229:23–28

    Article  PubMed  Google Scholar 

  • Perkins S, Verschoyle RD, Hill K, Parveen I, Threadgill MD, Sharma RA, Williams ML, Steward WP, Gescher AJ (2002) Chemopreventive efficacy and pharmacokinetics of curcumin in the min/+ mouse, a model of familial adenomatous polyposis. Cancer Epidemiol Biomarkers Prev 11:535–540

    CAS  PubMed  Google Scholar 

  • Phillis JW, Horrocks LA, Farooqui AA (2006) Cyclooxygenases, lipoxygenases, and epoxygenases in CNS: their role and involvement in neurological disorders. Brain Res Rev 52:201–243

    Google Scholar 

  • Phillips J, Moore-Medlin T, Sonavane K, Ekshyyan O, McLarty J, Nathan CA (2013) Curcumin inhibits UV radiation-induced skin cancer in SKH-1 mice. Otolaryngol Head Neck Surg 148:797–803

    Article  PubMed  Google Scholar 

  • Pluta R, Bogucka-Kocka A, Ułamek-Kozioł M, Furmaga-Jabłońska W, Januszewski S, Brzozowska J, Jabłoński M, Kocki J (2015) Neurogenesis and neuroprotection in postischemic brain neurodegeneration with Alzheimer phenotype: is there a role for curcumin? Folia Neuropathol 53:89–99

    Article  PubMed  Google Scholar 

  • Poole KM, Nelson CE, Joshi RV, Martin JR, Gupta MK, Haws SC, Kavanaugh TE, Skala MC, Duvall CL (2015) ROS-responsive microspheres for on demand antioxidant therapy in a model of diabetic peripheral arterial disease. Biomaterials 41:166–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prasad S, Tyagi AK, Aggarwal BB (2014) Recent developments in delivery, bioavailability, absorption and metabolism of curcumin: the golden pigment from golden spice. Cancer Res Treat 46:2–18

    Article  PubMed  PubMed Central  Google Scholar 

  • Priyadarsini KI (2013) Chemical and structural features influencing the biological activity of curcumin. Curr Pharm Des 19:2093–2100

    CAS  PubMed  Google Scholar 

  • Prousek J (2007) Fenton chemistry in biology and medicine. Pure Appl Chem 79:2325–2338

    Article  CAS  Google Scholar 

  • Rajapurkar MM, Shah SV, Lele SS, Hegde UN, Lensing SY, Gohel K, Mukhopadhyay B, Gang S, Eigenbrodt ML (2012) Association of catalytic iron with cardiovascular disease. Am J Cardiol 109:438–442

    Article  CAS  PubMed  Google Scholar 

  • Rajasekar N, Dwivedi S, Tota SK, Kamat PK, Hanif K, Nath C, Shukla R (2013) Neuroprotective effect of curcumin on okadaic acid induced memory impairment in mice. Eur J Pharmacol 715:381–394

    Article  CAS  PubMed  Google Scholar 

  • Rajasekaran SA (2011) Therapeutic potential of curcumin in gastrointestinal diseases. World J Gastrointest Pathophysiol 2:1–14

    Article  PubMed  PubMed Central  Google Scholar 

  • Ravindran J, Prasad S, Aggarwal BB (2009) Curcumin and cancer cells: how many ways can curry kill tumor cells selectively? AAPS J 11:495–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ray B, Bisht S, Maitra A, Maitra A, Lahiri DK (2011) Neuroprotective and neurorescue effects of a novel polymeric nanoparticle formulation of curcumin (NanoCurc™) in the neuronal cell culture and animal model: implications for Alzheimer’s disease. J Alzheimers Dis 23:61–77

    CAS  PubMed  PubMed Central  Google Scholar 

  • Re F, Cambianica I, Zona C, Sesana S, Gregori M, Rigolio R (2011) Functionalization of liposomes with ApoE-derived peptides at different density affects cellular uptake and drug transport across a blood-brain barrier model. Nanomed Nanotechnol 7:551e9

    Article  CAS  Google Scholar 

  • Reagan LP (2007) Insulin signaling effects on memory and mood. Curr Opin Pharmacol 7:633–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reagan LP (2012) Diabetes as a chronic metabolic stressor: causes, consequences, and clinical complications. Exp Neurol 233:68–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reagan LP, Grillo CA, Piroli GG (2008) The As and Ds of stress: metabolic, morphological and behavioral consequences. Eur J Pharmacol 585:64–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reger MA, Craft S (2006) Intranasal insulin administration: a method for dissociating central and peripheral effects of insulin. Drugs Today (Barc) 42:729–739

    Article  CAS  Google Scholar 

  • Rhee SG, Bae YS, Lee SR, Kwon J (2000) Hydrogen peroxide: a key messenger that modulates protein phosphorylation through cysteine oxidation. Sci STKE 53:pe1

    Google Scholar 

  • Richardson DR (2002) Therapeutic potential of iron chelators in cancer therapy. Adv Exp Med Biol 509:231–249

    Article  CAS  PubMed  Google Scholar 

  • Rinwa P, Kumar A (2012) Piperine potentiates the protective effects of curcumin against chronic unpredictable stress-induced cognitive impairment and oxidative damage in mice. Brain Res 1488:38–50

    Article  CAS  PubMed  Google Scholar 

  • Rojo AI, Medina-Campos ON, Rada P, Zúñiga-Toalá A, López-Gazcón A, Espada S, Pedraza-Chaverri J, Cuadrado A (2012) Signaling pathways activated by the phytochemical nordihydroguaiaretic acid contribute to a Keap1-independent regulation of Nrf2 stability: role of glycogen synthase kinase-3. Free Radic Biol Med 52:473–487

    Article  CAS  PubMed  Google Scholar 

  • Roney C, Kulkarni P, Arora V, Antich P, Bonte F, Wu A, Mallikarjuana NN, Manohar S, Liang HF, Kulkarni AR, Sung HW, Sairam M, Aminabhavi TM (2005) Targeted nanoparticle delivery through blood–brain barrier for Alzheimer’s disease. J Control Release 108:193–214

    Article  CAS  PubMed  Google Scholar 

  • Rushworth SA, Ogborne RM, Charalambos CA, O’Connell MA (2006) Role of protein kinase C delta in curcumin-induced antioxidant response element-mediated gene expression in human monocytes. Biochem Biophys Res Commun 341:1007–1016

    Article  CAS  PubMed  Google Scholar 

  • Ryan JL, Heckler CE, Ling M, Katz A, Williams JP, Pentland AP, Morrow GR (2013) Curcumin for radiation dermatitis: a randomized, double-blind, placebo-controlled clinical trial of thirty breast cancer patients. Radiat Res 180:34–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sahay A, Scobie KN, Hill AS, O’Carroll CM, Kheirbek MA, Burghardt NS, Fenton AA, Dranovsky A, Hen R (2011) Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation. Nature 472:466–470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schiborr C, Kocher A, Behnam D, Jandasek J, Toelstede S, Frank J (2014) The oral bioavailability of curcumin from micronized powder and liquid micelles is significantly increased in healthy humans and differs between sexes. Mol Nutr Food Res 58:516–527

    Article  CAS  PubMed  Google Scholar 

  • Schultze SM, Hemmings BA, Niessen M, Tschopp O (2012) PI3K/AKT, MAPK and AMPK signalling: protein kinases in glucose homeostasis. Expert Rev Mol Med 14, e1

    Article  PubMed  CAS  Google Scholar 

  • Sehgal A, Kumar M, Jain M, Dhawan DK (2012) Piperine as an adjuvant increases the efficacy of curcumin in mitigating benzo(a)pyrene toxicity. Hum Exp Toxicol 31:473–482

    Article  CAS  PubMed  Google Scholar 

  • Sena LA, Li S, Jairaman A, Prakriya M, Ezponda T, Hildeman DA, Wang C-R, Schumacker PT, Licht JD, Perlman H, Bryce PJ, Chandel NS (2013) Mitochondria are required for antigen-specific T cell activation through reactive oxygen species signaling. Immunity 38:225–236

    Google Scholar 

  • Seo K-I, Choi M-S, Jung UJ, Kim HJ, Yeo J, Jeon SM, Lee MK (2008) Effect of curcumin supplementation on blood glucose, plasma insulin, and glucose homeostasis related enzyme activities in diabetic db/db mice. Mol Nutr Food Res 52:995–1004

    Article  CAS  PubMed  Google Scholar 

  • Serhan CN, Savill J (2005) Resolution of inflammation: the beginning programs the end. Nat Immunol 6:1191–1197

    Article  CAS  PubMed  Google Scholar 

  • Sharma RA, Ireson CR, Verschoyle RD, Hill KA, Williams ML, Leuratti C, Manson MM, Marnett LJ, Steward WP, Gescher A (2001) Effects of dietary curcumin on glutathione S-transferase and malondialdehyde-DNA adducts in rat liver and colon mucosa: relationship with drug levels. Clin Cancer Res 7:1452–1458

    CAS  PubMed  Google Scholar 

  • Sharma S, Kulkarni SK, Agrewala JN, Chopra K (2006) Curcumin attenuates thermal hyperalgesia in a diabetic mouse model of neuropathic pain. Eur J Pharmacol 536:256–261

    Article  CAS  PubMed  Google Scholar 

  • Shehzad A, Lee YS (2013) Molecular mechanisms of curcumin action: signal transduction. Biofactors 39:27–36

    Article  CAS  PubMed  Google Scholar 

  • Shehzad A, Ha T, Subhan F, Lee YS (2011) New mechanisms and the anti-inflammatory role of curcumin in obesity and obesity-related metabolic diseases. Eur J Nutr 50:151–161

    Article  CAS  PubMed  Google Scholar 

  • Shishodia S (2013) Molecular mechanisms of curcumin action: gene expression. Biofactors 39:37–55

    Article  CAS  PubMed  Google Scholar 

  • Shishodia S, Sethi G, Aggarwal BB (2005) Curcumin: getting back to the roots. Ann N Y Acad Sci 1056:206–217

    Article  CAS  PubMed  Google Scholar 

  • Shishodia S, Singh T, Chaturvedi MM (2007) Modulation of transcription factors by curcumin. Adv Exp Med Biol 595:127–148

    Article  PubMed  Google Scholar 

  • Shoba G, Joy D, Joseph T, Majeed M, Rajendran R, Srinivas PS (1998) Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Med 64:353–356

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Aggarwal BB (1995) Activation of transcription factor NF-kappa B is suppressed by curcumin (diferuloylmethane) [corrected]. J Biol Chem 270:24995–25000

    Google Scholar 

  • Singh DV, Godbole MM, Misra K (2013) A plausible explanation for enhanced bioavailability of P-gp substrates in presence of piperine: simulation for next generation of P-gp inhibitors. J Mol Model 19:227–238

    Article  CAS  PubMed  Google Scholar 

  • Soetikno V, Sari FR, Veeraveedu PT, Thandavarayan RA, Harima M, Sukumaran V, Lakshmanan AP, Suzuki K, Kawachi H, Watanabe K (2011) Curcumin ameliorates macrophage infiltration by inhibiting NF-B activation and proinflammatory cytokines in streptozotocin induced-diabetic nephropathy. Nutr Metab (Lond) 8:35

    Article  CAS  Google Scholar 

  • Srinivasan M, Sudheer AR, Menon VP (2007) Ferulic acid: therapeutic potential through its antioxidant property. J Clin Biochem Nutr 40:92–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stone SS, Teixeira CM, Devito LM, Zaslavsky K, Josselyn SA, Lozano AM, Frankland PW (2011) Stimulation of entorhinal cortex promotes adult neurogenesis and facilitates spatial memory. J Neurosci 31:13469–13484

    Article  CAS  PubMed  Google Scholar 

  • Stoner GD, Wang L, Casto BC (2008) Laboratory and clinical studies of cancer chemoprevention by antioxidants in berries. Carcinogenesis 29:1665–1674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stumvoll M, Goldstein BJ, van Haeften TW (2005) Type 2 diabetes: principles of pathogenesis and therapy. Lancet 365:1333–1346

    Article  CAS  PubMed  Google Scholar 

  • Sun GY, Horrocks LA, Farooqui AA (2007) The roles of NADPH oxidase and phospholipases A2 in oxidative and inflammatory responses in neurodegenerative diseases. J Neurochem 103:1–16

    Article  CAS  PubMed  Google Scholar 

  • Suresh D, Srinivasan K (2010) Tissue distribution & elimination of capsaicin, piperine & curcumin following oral intake in rats. Indian J Med Res 131:682–691

    CAS  PubMed  Google Scholar 

  • Suryanarayana P, Satyanarayana A, Balakrishna N, Kumar PU, Bhanuprakash Reddy G (2007) Effect of turmeric and curcumin on oxidative stress and antioxidant enzymes in streptozotocin-induced diabetic rat. Med Sci Monit 13:BR286–BR292

    CAS  PubMed  Google Scholar 

  • Svenson S (2012) Clinical translation of nanomedicines. Curr Opin Solid State Mater 16:287e94

    Article  CAS  Google Scholar 

  • Svensson CI, Yaksh TL (2002) The spinal phospholipase-cyclooxygenase-prostanoid cascade in nociceptive processing. Annu Rev Pharmacol Toxicol 42:553–583

    Article  CAS  PubMed  Google Scholar 

  • Tajik H, Tamaddonfard E, Hamzeh-Gooshchi N (2007) Interaction between curcumin and opioid system in the formalin test of rats. Pak J Biol Sci 10:2583–2586

    Article  CAS  PubMed  Google Scholar 

  • Tajik H, Tamaddonfard E, Hamzeh-Gooshchi N (2008) The effect of curcumin (active substance of turmeric) on the acetic acid-induced visceral nociception in rats. Pak J Biol Sci 11:312–314

    Article  CAS  PubMed  Google Scholar 

  • Teiten MH, Dicato M, Diederich M (2013) Curcumin as a regulator of epigenetic events. Mol Nutr Food Res 57:1619–1629

    Article  CAS  PubMed  Google Scholar 

  • Thiyagarajan M, Sharma SS (2004) Neuroprotective effect of curcumin in middle cerebral artery occlusion induced focal cerebral ischemia in rats. Life Sci 74:969–985

    Article  CAS  PubMed  Google Scholar 

  • Thomas SL, Zhong D, Zhou W, Malik S, Liotta D, Snyder JP, Hamel E, Giannakakou P (2008) EF24, a novel curcumin analog, disrupts the microtubule cytoskeleton and inhibits HIF-1. Cell Cycle 7:2409–2417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tiwari SK, Agarwal S, Seth B, Yadav A, Nair S, Bhatnagar P, Karmakar M, Kumari M, Chauhan LK, Patel DK, Srivastava V, Singh D, Gupta SK, Tripathi A, Chaturvedi RK, Gupta KC (2014) Curcumin-loaded nanoparticles potently induce adult neurogenesis and reverse cognitive deficits in Alzheimer’s disease model via canonical Wnt/β-catenin pathway. ACS Nano 8:76–103

    Article  CAS  PubMed  Google Scholar 

  • Todd PH Jr (1991) Curcumin complexed on water-dispersible substrates. US Patent US4999205

    Google Scholar 

  • Tomren MA, Masson M, Loftsson T, Tonnesen HH (2007) Studies on curcumin and curcuminoids XXXI.Symmetric and asymmetric curcuminoids. Stability activity and complexation with cyclodextrin. Int J Pharm 338:27–34

    Article  CAS  PubMed  Google Scholar 

  • Tønnesen HH, Másson M, Loftsson T (2002) Studies of curcumin and curcuminoids. XXVII. Cyclodextrin complexation: solubility, chemical and photochemical stability. Int J Pharm 244:127–135

    Article  PubMed  Google Scholar 

  • Torchilin V (2009) Multifunctional and stimuli-sensitive pharmaceutical nanocarriers. Eur J Pharm Biopharm 7:431e44

    Google Scholar 

  • Torchilin V (2012) Tumor delivery of macromolecular drugs based on the EPR effect. Adv Drug Deliv Rev 63:131e5

    Google Scholar 

  • Tuorkey MJ (2014) Curcumin a potent cancer preventive agent: mechanisms of cancer cell killing. Interv Med Appl Sci 6:139–146

    Article  PubMed  PubMed Central  Google Scholar 

  • Uauy R, Olivares M, Gonzalez M (1998) Essentiality of copper in humans. Am J Clin Nutr 67(5 Suppl):952S–959S

    CAS  PubMed  Google Scholar 

  • van Praag H, Schinder AF, Christie BR, Toni N, Palmer TD, Gage FH (2002) Functional neurogenesis in the adult hippocampus. Nature 415:1030–1034

    Article  PubMed  CAS  Google Scholar 

  • Vogelstein B, Kinzler KW (2004) Cancer genes and the pathways they control. Nat Med 10:789–799

    Article  CAS  PubMed  Google Scholar 

  • Wahlstrom B, Blennow G (1978) A study on the fate of curcumin in the rat. Acta Pharmacol Toxicol 43:86–92

    Article  CAS  Google Scholar 

  • Wang YJ, Pan MH, Cheng AL, Lin LI, Ho YS, Hsieh CY (1997) Stability of curcumin in buffer solutions and characterization of its degradation products. J Pharm Biomed Anal 15:1867–1876

    Article  CAS  PubMed  Google Scholar 

  • Wang R, Li YB, Li YH, Xu Y, Wu HL, Li XJ (2008) Curcumin protects against glutamate excitotoxicity in rat cerebral cortical neurons by increasing brain-derived neurotrophic factor level and activating TrkB. Brain Res 1210:84–91

    Article  CAS  PubMed  Google Scholar 

  • Wang R, Li YH, Xu Y, Li YB, Wu HL, Guo H, Zhang JZ, Zhang JJ, Pan XY, Li XJ (2010) Curcumin produces neuroprotective effects via activating brain-derived neurotrophic factor/TrkB-dependent MAPK and PI-3K cascades in rodent cortical neurons. Prog Neuropsychopharmacol Biol Psychiatry 34:147–153

    Article  CAS  PubMed  Google Scholar 

  • Weisberg SP, Leibel R, Tortoriello DV (2008) Dietary curcumin significantly improves obesity-associated inflammation and diabetes in mouse models of diabesity. Endocrinology 149:3549–3558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiss N, Miller F, Cazaubon S, Couraud PO (2009) The blood–brain barrier in brain homeostasis and neurological diseases. Biochim Biophys Acta 1788:842–857

    Article  CAS  PubMed  Google Scholar 

  • Wu A, Ying Z, Gomez-Pinilla F (2006) Dietary curcumin counteracts the outcome of traumatic brain injury on oxidative stress, synaptic plasticity, and cognition. Exp Neurol 197:309–317

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Ku B, Cui L, Li X, Barish PA, Foster TC, Ogle WO (2007) Curcumin reverses impaired hippocampal neurogenesis and increases serotonin receptor 1A mRNA and brain-derived neurotrophic factor expression in chronically stressed rats. Brain Res 1162:9–18

    Article  CAS  PubMed  Google Scholar 

  • Yadav VR, Prasad S, Kannappan R, Ravindran J, Chaturvedi MM, Vaahtera L, Parkkinen J, Aggarwal BB (2010) Cyclodextrin-complexed curcumin exhibits anti-inflammatory and antiproliferative activities superior to those of curcumin through higher cellular uptake. Biochem Pharmacol 80:1021–1032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yanagisawa D, Amatsubo T, Morikawa S, Taguchi H, Urushitani M, Shirai N, Hirao K, Shiino A, Inubushi T, Tooyama I (2011) In vivo detection of amyloid beta deposition using (1)(9)F magnetic resonance imaging with a (1)(9)F-containing curcumin derivative in a mouse model of Alzheimer’s disease. Neuroscience 184:120–127

    Article  CAS  PubMed  Google Scholar 

  • Yanagisawa D, Ibrahim NF, Taguchi H, Morikawa S, Hirao K, Shirai N, Sogabe T, Tooyama I (2015) Curcumin derivative with the substitution at C-4 position, but not curcumin, is effective against amyloid pathology in APP/PS1 mice. Neurobiol Aging 36:201–210

    Article  CAS  PubMed  Google Scholar 

  • Yang F, Lim GP, Begum AN, Ubeda OJ, Simmons MR, Ambegaokar SS, Chen PP, Kayed R, Glabe CG, Frautschy SA, Cole GM (2005) Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J Biol Chem 280:5892–5901

    Article  CAS  PubMed  Google Scholar 

  • Yang K-Y, Lin L-C, Tseng T-Y, Wang S-C, Tsai T-H (2007) Oral bioavailability of curcumin in rat and the herbal analysis from Curcuma longa by LC-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 853:183–189

    Article  CAS  PubMed  Google Scholar 

  • Yang R, Zhang S, Kong D, Gao X, Zhao Y, Wang Z (2012) Biodegradable polymer-curcumin conjugate micelles enhance the loading and delivery of low-potency curcumin. Pharm Res 29:3512–3525

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Duan W, Lin Y, Yi W, Liang Z, Yan J, Wang N, Deng C, Zhang S, Li Y, Chen W, Yu S, Yi D, Jin Z (2013) SIRT1 activation by curcumin pretreatment attenuates mitochondrial oxidative damage induced by myocardial ischemia reperfusion injury. Free Radic Biol Med 65C:667–679

    Article  CAS  Google Scholar 

  • Yarru LP, Settivari RS, Gowda NK, Antoniou E, Ledoux DR, Rottinghaus GE (2009) Effects of turmeric (Curcuma longa) on the expression of hepatic genes associated with biotransformation, antioxidant, and immune systems in broiler chicks fed aflatoxin. Poult Sci 88:2620–2627

    Article  CAS  PubMed  Google Scholar 

  • Ye SF, Hou ZQ, Zhong LM, Zhang QQ (2007) Effect of curcumin on the induction of glutathione S-transferases and NADP(H):quinone oxidoreductase and its possible mechanism of action. Yao Xue Xue Bao 42:376–380

    CAS  PubMed  Google Scholar 

  • Yeon KY, Kim SA, Kim YH, Lee MK, Ahn DK, Kim HJ, Kim JS, Jung SJ, Oh SB (2010) Curcumin produces an antihyperalgesic effect via antagonism of TRPV1. J Dent Res 89:170–174

    Article  CAS  PubMed  Google Scholar 

  • Yoysungnoen P, Wirachwong P, Bhattarakosol P, Niimi H, Patumraj S (2006) Effects of curcumin on tumor angiogenesis and biomarkers, COX-2 and VEGF, in hepatocellular carcinoma cell-implanted nude mice. Clin Hemorheol Microcirc 34:109–115

    CAS  PubMed  Google Scholar 

  • Yu SY, Zhang M, Luo J, Zhang L, Shao Y, Li G (2013a) Curcumin ameliorates memory deficits via neuronal nitric oxide synthase in aged mice. Prog Neuropsychopharmacol Biol Psychiatry 45C:47–53

    Article  CAS  Google Scholar 

  • Yu SY, Gao R, Zhang L, Luo J, Jiang H, Wang S (2013b) Curcumin ameliorates ethanol-induced memory deficits and enhanced brain nitric oxide synthase activity in mice. Prog Neuropsychopharmacol Biol Psychiatry 44C:210–216

    Article  CAS  Google Scholar 

  • Zhao C, Deng W, Gage FH (2008) Mechanisms and functional implications of adult neurogenesis. Cell 132:645–660

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Xu Y, Zhao Q, Chen CR, Liu AM, Huang ZL (2012) Curcumin exerts antinociceptive effects in a mouse model of neuropathic pain: Descending monoamine system and opioid receptors are differentially involved. Neuropharmacology 62:843–854

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Wang C, Zhang JF, Liu L, Liu AM, Ma Q, Zhou WH, Xu Y (2013) Chronic curcumin treatment normalizes depression-like behaviors in mice with mononeuropathy: involvement of supraspinal serotonergic system and GABA receptor. Psychopharmacology (Berl) 231:2171–2187

    Article  CAS  Google Scholar 

  • Zhou H, Beevers CS, Huang S (2011) The targets of curcumin. Curr Drug Targets 12:332–347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Q, Sun Y, Yun X, Ou Y, Zhang W, Li J-X (2014) Antinociceptive effects of curcumin in a rat model of postoperative pain. Sci Rep 4:4932

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Farooqui, A.A. (2016). Metabolism, Bioavailability, Biochemical Effects of Curcumin in Visceral Organs and the Brain. In: Therapeutic Potentials of Curcumin for Alzheimer Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-15889-1_3

Download citation

Publish with us

Policies and ethics