Skip to main content
  • 1717 Accesses

Abstract

Voltage-controlled oscillator (VCO) is one of the most critical building blocks in a phase-locked loop (PLL) since it needs to operate at the highest frequency and its phase-noise performance determines the out-of-band phase noise of the PLL at offset frequency larger than the loop bandwidth. Besides, the output frequency range covered by the PLL is also directly limited by the tuning range of the VCO.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The exact value of the maximum Vo should be 2(VDD − VD,MT), where VD,MT is the minimum drain voltage of MT. The maximum Vo approaches 2VDD for a large VDD.

  2. 2.

    As will be discussed later, the amplitude noise can also convert to phase noise if a varactor is employed for frequency tuning in a VCO.

  3. 3.

    Here the effect of AM-PM noise conversion is ignored for simplicity so that the flicker noise from the MT does not contribute to the phase noise, which is a well approximation as long as the varactor is kept small.

References

  1. Goel, A., & Hashemi, H. (2007). Frequency switching in dual-resonance oscillators. IEEE Journal of Solid-State Circuits, 42, 571–582.

    Article  Google Scholar 

  2. Nguyen, N. M., & Meyer, R. G. (1992). Start-up and frequency stability in high-frequency oscillators. IEEE Journal of Solid-State Circuits, 27, 810–820.

    Article  Google Scholar 

  3. Goel, A., & Hashemi, H. (2008). Concurrent dual-frequency oscillators and phase-locked loops. IEEE Transactions on Microwave Theory and Techniques, 56, 1846–1860.

    Article  Google Scholar 

  4. Li, A., & Luong, H. C. (2012, June). A reconfigurable 4.7–6.6GHz and 8.5–10.7GHz concurrent and dual-band oscillator in 65nm CMOS. IEEE Radio-Frequency Integrated Circuits Symposium (pp. 523–526). Montreal, Canada: IEEE.

    Google Scholar 

  5. Tiebout, M. (2006). Low power VCO design in CMOS (Advanced microelectronics series). Berlin, Germany: Springer.

    Google Scholar 

  6. Razavi, B. (2011). RF microelectronics (Prentice hall communications engineering and emerging technologies series 2nd ed.). Upper Saddle River, NJ: Pearson Education.

    Google Scholar 

  7. Andreani, P., & Mattisson, S. (2000). On the use of MOS varactors in RF VCO’s. IEEE Journal of Solid-State Circuits, 35, 905–910.

    Article  Google Scholar 

  8. Hajimiri, A., & Lee, T. H. (1998). A general theory of phase noise in electrical oscillators. IEEE Journal of Solid-State Circuits, 33, 179–194.

    Article  Google Scholar 

  9. Hajimiri, A., & Lee, T. H. (1999). The design of low noise oscillators. Norwell, MA: Kluwer.

    Google Scholar 

  10. Jannesari, A., & Kamarei, M. (2007). Comments on “a general theory of phase noise in electrical oscillators”. IEEE Journal of Solid-State Circuits, 42, 2314.

    Article  Google Scholar 

  11. Andreani, P., Wang, X., Vandi, L., & Fard, A. (2005). A study of phase noise in colpitts and LC-tank CMOS oscillators. IEEE Journal of Solid-State Circuits, 40, 1107–1118.

    Article  Google Scholar 

  12. Rael, J. J., & Abidi, A. A. (2000). Physical processes of phase noise in differential LC oscillators. IEEE Custom Integrated Circuits Conference (pp. 569–572). Orlando, FL: IEEE.

    Google Scholar 

  13. Abidi, A. A. (1986). High-frequency noise measurements on FET’s with small dimensions. IEEE Transactions on Electron Devices, 33, 1801–1805.

    Article  Google Scholar 

  14. Hegazi, E., Rael, J., & Abidi, A. A. (2005). The designer’s guide to high-purity oscillators. New York: Kluwer.

    Google Scholar 

  15. Groszkowsi, J. (1933). The interdependence of frequency variation and harmonic content, and the problem of constant-frequency oscillators. Proceedings of the Institute of Radio Engineers (IRE), 21, 958–981.

    Google Scholar 

  16. Bevilacqua, A., & Andreani, P. (2012). An analysis of 1/f noise to phase noise conversion in CMOS harmonic oscillators. IEEE Transactions on Circuits and Systems I: Regular Papers, 59(5), 938–945.

    Article  MathSciNet  Google Scholar 

  17. Shahmohammadi, M., Babaie, M., Staszewski, R. B. (2015, February). A 1/f noise upconversion reduction technique applied to class-D and class-F oscillators. IEEE ISSCC Digest of Technical Papers (pp. 444–445). San Francisco: IEEE.

    Google Scholar 

  18. Hegazi, E., Sjoland, H., & Abidi, A. A. (2001). A filtering technique to lower LC oscillator phase noise. IEEE Journal of Solid-State Circuits, 36, 2403–2418.

    Article  Google Scholar 

  19. Kral, A., Behbahani, F., Abidi, A. A. (1998, September). RF-CMOS oscillators with switched tuning. Proceedings of the IEEE Custom Integrated Circuits Conference (pp. 555–558). Santa Clara, CA: IEEE.

    Google Scholar 

  20. Berny, A. D., Niknejad, A. M., & Meyer, R. G. (2005). A 1.8-GHz LC VCO with 1.3-GHz tuning range and digital amplitude calibration. IEEE Journal of Solid-State Circuits, 40, 909–916.

    Article  Google Scholar 

  21. Hajimiri, A., & Lee, T. H. (1999). Design issues in CMOS differential LC oscillators. IEEE Journal of Solid-State Circuits, 34, 717–724.

    Article  Google Scholar 

  22. Andreani, P., & Fard, A. (2006). More on the 1/f2 phase noise performance of CMOS differential-pair LC-tank oscillators. IEEE Journal of Solid-State Circuits, 41, 2703–2712.

    Article  Google Scholar 

  23. Garampazzi, M., Mendes, P., Codega, N., Manstretta, D., & Castello, R. (2014). A 195.6dBc/Hz peak FoM P-N class-B oscillator with transformer-based tail filtering. IEEE European Solid-State Circuits Conference (pp. 331–334). Venice Lido, Venice: IEEE.

    Google Scholar 

  24. Mazzanti, A., & Andreani, P. (2008). Class-C harmonic CMOS VCOs, with a general result on phase noise. IEEE Journal of Solid-State Circuits, 43, 2716–2729.

    Article  Google Scholar 

  25. Soltanian, B., & Kinget, P. R. (2006). Tail current-shaping to improve phase noise in LC voltage-controlled oscillators. IEEE Journal of Solid-State Circuits, 41, 1792–2006.

    Article  Google Scholar 

  26. Kinget, P. (1999). Integrated GHz voltage controlled oscillators. In W. Sansen, J. Huijsing, & R. Plassche (Eds.), Analog circuit design: (X)DSL and other communication systems; RF MOST models; integrated filters and oscillators. Boston: Kluwer.

    Google Scholar 

  27. Behbahani, F., Kishigami, Y., Leete, J., & Abidi, A. A. (2001). CMOS mixers and polyphase filters for large image rejection. IEEE Journal of Solid-State Circuits, 35, 873–887.

    Article  Google Scholar 

  28. Eynde, F. O., Schmit, J. -J., Charlier, V., Alexandre, R., Sturman, C., Coffin, K., et al. (2001, February). A fully-integrated single-chip SOC for bluetooth. IEEE ISSCC Digest of Technical Papers (pp. 196–197). San Francisco: IEEE.

    Google Scholar 

  29. Rofougaran, A., Rael, J., Rofougaran, M., Abidi, A. A. (1996, February). A 900 MHz CMOS LV-oscillator with quadrature outputs. IEEE ISSCC Digest of Technical Papers (pp. 391–393). San Francisco: IEEE.

    Google Scholar 

  30. Li, S., Kipnis, I., & Ismail, M. (2003). A 10-GHz CMOS quadrature LC-VCO for multi-rate optical applications. IEEE Journal of Solid-State Circuits, 38, 1626–1634.

    Article  Google Scholar 

  31. Romanom, L., Levantino, S., Bonfanti, A., Samori, C., & Lacaita, A. L. (2004). Phase noise and accuracy in quadrature oscillators. IEEE International Symposium on Circuits and Systems, 1, 161–164.

    Google Scholar 

  32. Tang, J., Ven, P., Kasperkovitz, D., & Roermund, A. (2002). Analysis and design of an optimally coupled-5-GHz quadrature LC oscillator. IEEE Journal Solid-State Circuits, 37, 657–661.

    Article  Google Scholar 

  33. Andreani, P., Bonfanti, A., Romano, L., & Samori, C. (2002). Analysis and design of a 1.8-GHz CMOS LC quadrature VCO. IEEE Journal of Solid-State Circuits, 37, 1738–1747.

    Google Scholar 

  34. Andreani, P. (2002, February). A low-phase-noise low-phase-error 1.8 GHz quadrature CMOS VCO. IEEE ISSCC Digest of Technical Papers (pp. 290–292). San Francisco: IEEE.

    Google Scholar 

  35. Kim, H.-R., Cha, C.-Y., Oh, S.-M., Yang, M.-S., & Lee, S.-G. (2004). A very low-power quadrature VCO with back-gate coupling. IEEE Journal of Solid-State Circuits, 39, 1626–1634.

    Article  Google Scholar 

  36. Gierkink, S. L. J., Levantino, S., Frye, R. C., Samori, C., & Boccuzzi, V. (2003). A low-phase-noise 5-GHz CMOS quadrature VCO using superharmonic coupling. IEEE Journal of Solid-State Circuits, 38, 1148–1154.

    Article  Google Scholar 

  37. Levantino, S., Zanuso, M., Samori, C., Lacaita, A. (2010, February). Suppression of flicker noise upconversion in a 65nm CMOS VCO in the 3.0-to-3.6GHz band. ISSCC Digest of Technical Papers (pp. 50–51). San Francisco: IEEE.

    Google Scholar 

  38. Tiebout, M. (2002). A CMOS fully integrated 1 GHz and 2 GHz dual band VCO with a voltage controlled inductor. IEEE European Solid-State Circuits Conference (pp. 799–802). Florence, Italy: IEEE.

    Google Scholar 

  39. Li, Z., & O, K. K. (2005). A low-phase-noise and low-power multiband CMOS voltage-controlled oscillator. IEEE Journal Solid-State Circuits, 40, 1296–1302.

    Article  Google Scholar 

  40. Sadhu, B., Omole, U. E., & Harjani, R. (2008). Modeling and synthesis of wideband switched-resonators for VCOs. IEEE Custom Integrated Circuits Conference (pp. 225–228). San Jose, CA: IEEE.

    Google Scholar 

  41. Sadhu, B., Kim, J., & Harjani, R. (2009). A CMOS 3.3–8.4 GHz wide tuning range, low phase noise LC VCO. IEEE Custom Integrated Circuits Conference (pp. 559–562). San Jose, CA: IEEE.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Luong, H.C., Yin, J. (2016). Design Considerations for CMOS Voltage-Controlled Oscillators (VCOs). In: Transformer-Based Design Techniques for Oscillators and Frequency Dividers. Springer, Cham. https://doi.org/10.1007/978-3-319-15874-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15874-7_3

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15873-0

  • Online ISBN: 978-3-319-15874-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics