Skip to main content

Steering and Non-steering Crawling Tetrahedral Micro-mechanisms

  • Conference paper
  • 1033 Accesses

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 30))

Abstract

Crawling mechanical structures with energetic autonomy and remote control may move and steer by sliding on the ground. The paper presents a study on simple possibilities to achieve sliding movement with a crawling tetrahedral structure and studies their movement capabilities both analytically and by MBS simulation. The structures are analyzed using an equivalent plane model and a 3d model, respectively. The analysis is structural, kinematical, static and dynamic.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ceccarelli M (2013) Mechanism design for robots. In: The 11th IFToMM international symposium on science of mechanisms and machines SYROM’13, Brasov. Springer, Dordrecht, pp 1–8

    Google Scholar 

  • Dickinson MH et al (2000) How animals move: an integrative view. Science 288:100

    Article  Google Scholar 

  • Ijspeert AJ (2008) Central pattern generators for locomotion control in animals and robots: a review. Neural Netw 21:642–653

    Article  Google Scholar 

  • Li T, Ceccarelli M (2012) A method for topological design of mechanism. In: Proceedings of the MEDER 2012, 2nd IFToMM symposium on mechanism design for robotics, Beihang University, Beijing

    Google Scholar 

  • Liang C, Ceccarelli M (2012) Design and simulation of a waist–trunk system for a humanoid robot. Mech Mach Theory 53:50–65

    Article  Google Scholar 

  • Liang C, Ceccarelli M, Takeda Y (2008) Operation analysis of a one-DOF pantograph leg mechanisms. Proceedings of the RAAD, the 17th international workshop on robotics in Alpe–Adria–Danube Region, Ancona, pp 1–10

    Google Scholar 

  • Lipson H, Pollack BJ (2000) Automatic design and manufacture of robotic life forms. Nature 406:974–978

    Article  Google Scholar 

  • Liu W, Menciassi A, Scapellato S, Dario P, Chen Y (2006) A biomimetic sensor for a crawling minirobot. Robot Auton Syst 54:513–528

    Article  Google Scholar 

  • Lovasz EC, Modler KH, Cărăbaş I (2005) Internationale Zusammenarbeit zwischen PU Timişoara und TU Dresden auf dem Gebiet der Getriebelehre – Getriebekolloquium 2005, RWTH Aachen, pp 179–192

    Google Scholar 

  • Mărgineanu D, Lovasz EC, Modler KH (2007) On the 3D crawling mechanical structures. The 12th IFToMM world congress, Besançon

    Google Scholar 

  • Modler KH, Mărgineanu D, Perju D, Lovasz EC, Fernengel V (2005) Analyse mechanischer Strukturen für einfache Fortbewegungen. In: Proceedings of the ninth IFToMM international symposium on the theory of machines and mechanisms, vol 1. Bucharest, pp 105–110

    Google Scholar 

  • Nam J, Jeon S, Kim S, Jang G (2014) Crawling microrobot actuated by a magnetic navigation system intubular environments. Sens Actuat A-Phys 209:100–106

    Article  Google Scholar 

  • Ottaviano E, Vorotnikov S, Ceccarelli M, Kurenev P (2011) Design improvements and control of a hybrid walking robot. Robot Auton Syst 59:128–141

    Article  Google Scholar 

  • Quillin KJ (1999) Kinematic scaling of locomotion by hydrostatic animals: ontogeny of peristaltic crawling by the earthworm lumbricus terrestris. J Exp Biol 202:661–674

    Google Scholar 

  • Tian Y, Wei X, Joneja A, Yao YA (2014) Sliding–crawling parallelogram mechanism. Mech Mach Theory 78:201–228

    Article  Google Scholar 

  • Wagner GL, Lauga E (2013) Crawling scallop: friction-based locomotion with one degree of freedom. J Theor Biol 324:42–51

    Article  MathSciNet  Google Scholar 

  • Wang W, Wang K, Zhang H (2009) Crawling gait realization of the mini-modular climbing caterpillar robot. Prog Nat Sci 19:1821–1829

    Article  Google Scholar 

  • Zielinska T (2004) Biological aspects of locomotion. In: Pfeiffer F, Zielinska T (eds) Walking: biological and technological aspects, vol 467, CISM courses and lectures. Springer, Wein/New York, pp 1–30

    Chapter  Google Scholar 

  • Zielinska T (2009) Biological inspiration used for robots motion synthesis. J Physiol Paris 103:133–140

    Article  Google Scholar 

  • Zielinska T, Chew CM (2006) Biologically inspired motion planning in robotics. In: Kozlowzki K (ed) Robot motion and control, vol 335, Lecture notes in control and information sciences. Springer, Heidelberg, pp 201–219, Chapter 13

    Chapter  Google Scholar 

  • Zielinska T, Chew CM, Kryczka P, Jargilo T (2009) Robot gait synthesis using the scheme of human motion skills development. Mech Mach Theory 44(3):541–558

    Article  MATH  Google Scholar 

  • Zimmermann K, Naletova VA, Zeidis I, Turkov VA, Kolev E, Lukashevich MV, Stepanov GV (2007) A deformable magnetizable worm in a magnetic field—a prototype of a mobile crawling robot. J Magn Magn Mater 311:450–453

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Mărgineanu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Mărgineanu, D., Lovasz, EC., Modler, KH., Gruescu, C.M. (2015). Steering and Non-steering Crawling Tetrahedral Micro-mechanisms. In: Lovasz, EC., Ananthasuresh, G., Corves, B., Petuya, V. (eds) Microactuators and Micromechanisms. Mechanisms and Machine Science, vol 30. Springer, Cham. https://doi.org/10.1007/978-3-319-15862-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15862-4_2

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15861-7

  • Online ISBN: 978-3-319-15862-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics