Advertisement

Steering and Non-steering Crawling Tetrahedral Micro-mechanisms

  • D. MărgineanuEmail author
  • E.-C. Lovasz
  • K.-H. Modler
  • C. M. Gruescu
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 30)

Abstract

Crawling mechanical structures with energetic autonomy and remote control may move and steer by sliding on the ground. The paper presents a study on simple possibilities to achieve sliding movement with a crawling tetrahedral structure and studies their movement capabilities both analytically and by MBS simulation. The structures are analyzed using an equivalent plane model and a 3d model, respectively. The analysis is structural, kinematical, static and dynamic.

Keywords

Piezo-actuators Hysteresis Micro-mechanisms Multi body system simulation 

References

  1. Ceccarelli M (2013) Mechanism design for robots. In: The 11th IFToMM international symposium on science of mechanisms and machines SYROM’13, Brasov. Springer, Dordrecht, pp 1–8Google Scholar
  2. Dickinson MH et al (2000) How animals move: an integrative view. Science 288:100CrossRefGoogle Scholar
  3. Ijspeert AJ (2008) Central pattern generators for locomotion control in animals and robots: a review. Neural Netw 21:642–653CrossRefGoogle Scholar
  4. Li T, Ceccarelli M (2012) A method for topological design of mechanism. In: Proceedings of the MEDER 2012, 2nd IFToMM symposium on mechanism design for robotics, Beihang University, BeijingGoogle Scholar
  5. Liang C, Ceccarelli M (2012) Design and simulation of a waist–trunk system for a humanoid robot. Mech Mach Theory 53:50–65CrossRefGoogle Scholar
  6. Liang C, Ceccarelli M, Takeda Y (2008) Operation analysis of a one-DOF pantograph leg mechanisms. Proceedings of the RAAD, the 17th international workshop on robotics in Alpe–Adria–Danube Region, Ancona, pp 1–10Google Scholar
  7. Lipson H, Pollack BJ (2000) Automatic design and manufacture of robotic life forms. Nature 406:974–978CrossRefGoogle Scholar
  8. Liu W, Menciassi A, Scapellato S, Dario P, Chen Y (2006) A biomimetic sensor for a crawling minirobot. Robot Auton Syst 54:513–528CrossRefGoogle Scholar
  9. Lovasz EC, Modler KH, Cărăbaş I (2005) Internationale Zusammenarbeit zwischen PU Timişoara und TU Dresden auf dem Gebiet der Getriebelehre – Getriebekolloquium 2005, RWTH Aachen, pp 179–192Google Scholar
  10. Mărgineanu D, Lovasz EC, Modler KH (2007) On the 3D crawling mechanical structures. The 12th IFToMM world congress, BesançonGoogle Scholar
  11. Modler KH, Mărgineanu D, Perju D, Lovasz EC, Fernengel V (2005) Analyse mechanischer Strukturen für einfache Fortbewegungen. In: Proceedings of the ninth IFToMM international symposium on the theory of machines and mechanisms, vol 1. Bucharest, pp 105–110Google Scholar
  12. Nam J, Jeon S, Kim S, Jang G (2014) Crawling microrobot actuated by a magnetic navigation system intubular environments. Sens Actuat A-Phys 209:100–106CrossRefGoogle Scholar
  13. Ottaviano E, Vorotnikov S, Ceccarelli M, Kurenev P (2011) Design improvements and control of a hybrid walking robot. Robot Auton Syst 59:128–141CrossRefGoogle Scholar
  14. Quillin KJ (1999) Kinematic scaling of locomotion by hydrostatic animals: ontogeny of peristaltic crawling by the earthworm lumbricus terrestris. J Exp Biol 202:661–674Google Scholar
  15. Tian Y, Wei X, Joneja A, Yao YA (2014) Sliding–crawling parallelogram mechanism. Mech Mach Theory 78:201–228CrossRefGoogle Scholar
  16. Wagner GL, Lauga E (2013) Crawling scallop: friction-based locomotion with one degree of freedom. J Theor Biol 324:42–51CrossRefMathSciNetGoogle Scholar
  17. Wang W, Wang K, Zhang H (2009) Crawling gait realization of the mini-modular climbing caterpillar robot. Prog Nat Sci 19:1821–1829CrossRefGoogle Scholar
  18. Zielinska T (2004) Biological aspects of locomotion. In: Pfeiffer F, Zielinska T (eds) Walking: biological and technological aspects, vol 467, CISM courses and lectures. Springer, Wein/New York, pp 1–30CrossRefGoogle Scholar
  19. Zielinska T (2009) Biological inspiration used for robots motion synthesis. J Physiol Paris 103:133–140CrossRefGoogle Scholar
  20. Zielinska T, Chew CM (2006) Biologically inspired motion planning in robotics. In: Kozlowzki K (ed) Robot motion and control, vol 335, Lecture notes in control and information sciences. Springer, Heidelberg, pp 201–219, Chapter 13CrossRefGoogle Scholar
  21. Zielinska T, Chew CM, Kryczka P, Jargilo T (2009) Robot gait synthesis using the scheme of human motion skills development. Mech Mach Theory 44(3):541–558CrossRefzbMATHGoogle Scholar
  22. Zimmermann K, Naletova VA, Zeidis I, Turkov VA, Kolev E, Lukashevich MV, Stepanov GV (2007) A deformable magnetizable worm in a magnetic field—a prototype of a mobile crawling robot. J Magn Magn Mater 311:450–453CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • D. Mărgineanu
    • 1
    Email author
  • E.-C. Lovasz
    • 1
  • K.-H. Modler
    • 2
  • C. M. Gruescu
    • 1
  1. 1.Department of MechatronicsUniversity Politehnica TimisoaraTimisoaraRomania
  2. 2.Institut für Leichtbau und KunststofftechnikTechnical University DresdenDresdenGermany

Personalised recommendations