Skip to main content

Part of the book series: SpringerBriefs in Earth Sciences ((BRIEFSEARTH))

  • 450 Accesses

Abstract

Recent studies, i.e. Crowell et al. (J Coast Res 235:3–5, 2007) and World Resources Institute (Decision making in a changing climate. United Nations Development Programme World Bank and World Resources Institute, Washington, 2010), indicated that 20 % (1,409 million) of the world population lives within 25 km of the coastline and 40 % (2,818 million) within less than 100 km—a coastal strip representing only 20 % of the global land surface. This area hosts 100 % of the population of Denmark, 99 % of the UK, 88 % of Sweden, 79 % of Italy and 45 % of Spain. Such a concentration of population and activities in coastal zones leads to an increase in vulnerability to coastal hazards (Adger et al. in Science 309:1036–1039, 2005).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adger WN, Hughes TP, Folke C, Carpenter SR, Rockström J (2005) Social-ecological resilience to coastal disasters. Science 309:1036–1039

    Article  Google Scholar 

  • Anfuso G, Martinez JA (2009) Assessment of coastal vulnerability through the use of GIS tools in South Sicily (Italy). Environ Manage 43:533–545

    Article  Google Scholar 

  • Anfuso G, Nachite D (2011) Climate change and the Mediterranean Southern Coasts. In: Jones A, Phillips MC (eds) Disappearing destinations: climate change and future challenges for coastal tourism. CAB International, Wallingford

    Google Scholar 

  • Bacon S, Carter DJT (1991) Wave climate changes in the North Atlantic and the North Sea. Int J Climato 11:545–558

    Article  Google Scholar 

  • Benassai G, Chirico F, Corsini S (2009) Una metodologia per la definizione del rischio da inondazione costiera. Studi Costieri 16:51–72

    Google Scholar 

  • Brown AC, McLachlan A (2002) Sandy shore ecosystems and the threats facing them: some predictions for the year 2025. Environ Conserv 29:62–77

    Article  Google Scholar 

  • Bruun P (1962) Sea level rise as a cause of shore erosion. J Wat Har Div 88:117–130

    Google Scholar 

  • Burzel A, Dassanayake D, Naulin M, Kortenhaus A, Oumeraci H, Wahl T, Mudersbach C, Jensen J, Gönnert G, Sossidi K, Ujeyl G, Pasche E (2010) Integrated flood risk analysis for extreme storm surges (XTREMRISK). COPRI, Shangai

    Google Scholar 

  • Carrasco AR, Ferreira Ó, Matias A, Pacheco A, Freire P (2012) Short-term sediment transport at a backbarrier beach. J Coast Res 27(6):1076–1084

    Google Scholar 

  • Carter TR, Parry ML, Nishioka S, Harasawa H (1994) Technical guidelines for assessing climate change impacts and adaptation. University College and Centre for Global Environmental Research, Tskuba

    Google Scholar 

  • Ceia F, Patricio J, Marquez J, Alveirinho-Dias J (2010) Coastal vulnerability in barrier islands: the high risk areas of the Ria Formosa (Portugal) system. Ocean Coast Manage 53:478–486

    Google Scholar 

  • Clark GE, Moser SC, Ratick SJ, Dow K, Meyer WB, Emani S, Jin W, Kasperson JX, Kasperson RE, Schwarz HE (1998) Assessing the vulnerability of coastal communities to extreme storms: the case of Revere, MA., USA. Mitig Adapt Strat Gl 3(1):59–82

    Google Scholar 

  • Cooper JAG, McLaughlin S (1998) Contemporary multidisciplinary approaches to coastal classification and environmental risk analysis. J Coast Res 14:512–524

    Google Scholar 

  • Cooper C, Fletcher J, Fyall A, Gilbert D, Wanhill S (2005) Tourism: principles and practice. Pearson, Oxford

    Google Scholar 

  • Crowell M, Scott E, Kevin C, McAfee S (2007) How many people live in coastal areas? J Coast Res 23(5):3–5

    Google Scholar 

  • Di Paola G, Iglesias J, Rodriguez G, Benassai G, Aucelli P, Pappone G (2011) Estimating coastal vulnerability in a meso-tidal beach by means of quantitative and semi-quantitative methodologies. J Coast Res SI 61:303–308

    Article  Google Scholar 

  • EEA (2006) The changing face of Europe’s coastal areas. In: Breton F, Meiner A (eds) EEA report no. 6. Office for official publications of the European Communities, Luxembourg

    Google Scholar 

  • Gornitz V (1991) Global coastal hazards from future sea level rise. Palaeogeogr Palaeocl 89:379–398

    Article  Google Scholar 

  • Gornitz VM, Daniels RC, White TW, Birdwell KR (1994) The development of a coastal risk assessment database: vulnerability to sea-level rise in the U.S. Southeast J Coast Res 12:327–338

    Google Scholar 

  • Gornitz VM, Beaty TW, Daniels RC (1997) A coastal hazards data base for the U.S. West coast. Oak Ridge National Laboratory, Oak Ridge

    Google Scholar 

  • Hanson H, Larson M (2008) Implications of extreme waves and water levels in the southern Baltic Sea. J Hydraul Res 46(2):292–302

    Article  Google Scholar 

  • Houston JR (1995) The economic value of beaches. US Army Corp of Engineering

    Google Scholar 

  • Houston JR (2008) The economic value of beaches—2008 update. Shore and Beach 76(3):22–26

    Google Scholar 

  • IPCC (2007) Climate change 2007: synthesis report. Contribution of working groups I, II and III to the fourth assessment report of the intergovernmental panel on climate change, IPCC, Geneva

    Google Scholar 

  • Jones A, Phillips M (2011) Disappearing destinations. CABI, London

    Google Scholar 

  • Keim BD, Muller RA, Stone GW (2004) Spatial and temporal variability of coastal storms in the North Atlantic Basin. Mar Geo 210:7–15

    Article  Google Scholar 

  • Kelly J (2000) Mapping coastal hazards along a rocky coast with eroding bluffs and beaches. In: Proceedings of the 3rd symposium on the Iberian Atlantic Margin Faro

    Google Scholar 

  • Kirshen P, Watson C, Douglas E, Gontz A, Lee J, Tian Y (2007) Coastal flooding in the Northeastern United States due to climate change. Mitig Adapt Strat Gl 13:437–451

    Article  Google Scholar 

  • Klein YL, Osleeb JP, Viola MR (2004) Tourism-generated earnings in the coastal zone: a regional analysis. J Coastal Res 20:1080–1088

    Google Scholar 

  • Komar PD, Allan JC (2008) Increasing hurricane-generated wave heights along the U.S. East Coast and their climate controls. J Coastal Res 24 (2): 479–488

    Google Scholar 

  • Li K, Li GS (2011) Vulnerability assessment of storm surges in the coastal area of Guangdong Province. Nat Hazards Earth Syst Sci 11:2003–2011

    Article  Google Scholar 

  • LOICZ (1995) Coastal zone resources assessment guidelines. LOICZ, Manila

    Google Scholar 

  • Maio CV, Gontz AM, Tenenbaum DE, Berkland EP (2012) Coastal hazard vulnerability assessment of sensitive historical sites on Rainsford Island, Boston Harbor, Massachusetts. J Coast Res 28(1A):20–33

    Article  Google Scholar 

  • McLaughlin S, Cooper JAG (2010) A multi-scale coastal vulnerability index: a tool for coastal managers? Environ Haz 9(3):233–248

    Google Scholar 

  • McLaughlin S, McKenna J, Cooper JAG (2002) Socio-economic data in coastal vulnerability indices: constraints and opportunities. J Coast Res 36:487–497

    Google Scholar 

  • Nicholls RJ, De la Vega-Leinert A (2000) Synthesis of sea-level rise impacts and adaptation costs for Europe. In: De la Vega-Leinert A, Nicholls RJ, Tol RSJ (eds) European vulnerability and adaptation to the impacts of accelerated sea level rise. Flood Hazard Research Centre, Enfield

    Google Scholar 

  • Penning-Rowsell E (2014) A realistic assessment of fluvial and coastal flood risk in England and Wales. Trans Inst Br Geogr 40(1):44–61

    Google Scholar 

  • Phillips M, Crisp S (2010) Sea level trends and NAO influences: The Bristol Chanel/Seven Estuary. Glob Planet Change 73:211–218

    Article  Google Scholar 

  • Raji O, Niazi S, Snoussi M, Dezileau L, Khouakhi A (2013) Vulnerability assessment of a lagoon to sea level rise and storm events: Nador lagoon (NE Morocco). J Coast Res 65:802–807

    Google Scholar 

  • Rangel N (2013) Efectos de temporales maritimos en sistemas litorales de la provincial de Cádiz. Ph.D. thesis, Cadiz University, Cadiz

    Google Scholar 

  • Shaw J, Taylor RB, Forbes DL, Ruz MH, Solomon S (1998) Sensitivity of the coasts of Canada to sea-level rise. Bull Geol Surv Can 505:1–79

    Google Scholar 

  • Small C, Nicholls RJ (2003) A global analysis of human settlement in coastal zones. J Coast Res 19:584–599

    Google Scholar 

  • Soomere T (2008) Extremes and decadal variations of the northern Baltic seawave conditions. In: Pelinovsky E, Kharif C (eds) Extreme ocean waves. Springer, Berlin

    Google Scholar 

  • Williams AT, Alveirinho-Dias J, Garcia Novo F, Garcia-Mora MR, Curr RH, Pereira A (2001) Integrated coastal dune management: checklists. Cont Shelf Res 21:1937–1960

    Google Scholar 

  • Williams AT, Davies P, Ergin A, Balas C (1998) Coastal recession and the reliability of planned responses: Colhuw beach, The Glamorgan heritage coast, Wales, UK. J Coast Res 26:72–79

    Google Scholar 

  • World Resources Institute (2010) Decision making in a changing climate. United Nations Development Programme World Bank and World Resources Institute, Washington

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nelson Rangel-Buitrago .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Rangel-Buitrago, N., Anfuso, G. (2015). Introduction. In: Risk Assessment of Storms in Coastal Zones: Case Studies from Cartagena (Colombia) and Cadiz (Spain). SpringerBriefs in Earth Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-15844-0_1

Download citation

Publish with us

Policies and ethics