Advertisement

Dunkl Operators as Covariant Derivatives in a QPB

  • Stephen Bruce Sontz
Part of the Universitext book series (UTX)

Abstract

Dunkl operators are quantum objects. But at first this was not how they were understood. Dunkl operators are a relatively new feature of modern mathematics. They were introduced by C. Dunkl in 1989 (see [19]) in harmonic analysis. They are neither local operators nor differential operators.

Keywords

Covariant Derivative Local Operator Total Order Coxeter Group Noncommutative Geometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Bibliography

  1. 1.
    E. Abe, Hopf Algebras, Cambridge Tracts in Mathematics, 74, Cambridge University Press, 1980.Google Scholar
  2. 2.
    E. Artin, Theorie de Zöpfe, Abh. Math. Sem. Univ. Hamburg 4 (1925) 47–72.zbMATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    P.F. Baum, P.M Hajac, R. Matthes, and W. Szymański, Noncommutative geometry approach to principal and associated bundles, to appear in Quantum Symmetries in Noncommutative Geometry (P. M. Hajac, ed.) 2007. arXiv:math/0701033.Google Scholar
  4. 4.
    P.F. Baum, K. De Commer, and P.M. Hajac, Free Actions of Compact Quantum Groups on Unital C -algebras, arXiv:1304.2812v1Google Scholar
  5. 5.
    B. Blackadar, Operator Algebras, Springer, 2006.Google Scholar
  6. 6.
    T. Brzeziński and S. Majid, Quantum group gauge theory on quantum spaces, Commun. Math. Phys. 157 (1993) 591–638. Erratum: Commun. Math. Phys. 167 (1995) 235.Google Scholar
  7. 7.
    T. Brzeziński, Quantum Fibre Bundles. An Introduction. (1995) arXiv:q-alg/9508008.Google Scholar
  8. 8.
    T. Brzeziński, Translation map in quantum principal bundles, J. Geom. Phys. 20 (1996) 349. arXiv:hep-th/9407145v2.Google Scholar
  9. 9.
    T. Brzeziński and P.M. Hajac, The Chern–Galois character, C. R. Acad. Sci. Paris, Ser. I 338 (2004) 113–116.Google Scholar
  10. 10.
    T. Brzezinski and P.M. Hajac, Galois-Type Extensions and Equivariant Projectivity, arXiv:0901.0141Google Scholar
  11. 11.
    V. Chari and A. Pressley, A Guide to Quantum Groups, Cambridge University Press, 1994.Google Scholar
  12. 12.
    A. Connes, Noncommutative differential geometry, Inst. Hautes Études Sci. Publ. Math. 62 (1985) 257–360.MathSciNetCrossRefGoogle Scholar
  13. 13.
    A. Connes, Noncommutative Geometry, Academic Press, 1994.Google Scholar
  14. 14.
    C. Davis and E.W. Ellers, eds., The Coxeter Legacy, Reflections and Projections, Am. Math. Soc., 2006.Google Scholar
  15. 15.
    V.G. Drinfeld, Hopf algebras and the quantum Yang–Baxter equation, Soviet Math. Dokl. 32 (1985) 254–258.Google Scholar
  16. 16.
    M. Dubois-Violette, Dérivations et calcul differentiel non commutatif, C.R. Acad. Sci. Paris, 307 I (1988) 403–408.Google Scholar
  17. 17.
    M. Dubois-Violette, R. Kerner, and J. Madore, Noncommutative differential geometry of matrix algebras, J. Math. Phys. 31 (1990) 316–322.zbMATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    M. Dubois-Violette, R. Kerner, and J. Madore, Noncommutative differential geometry and new models of gauge theory, J. Math. Phys. 31 (1990) 323–330.zbMATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    C.F. Dunkl, Differential difference operators associated to reflection groups, Trans. Am. Math. Soc. 311 (1989) 167–183.zbMATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    C.F. Dunkl, Reflection groups for analysis and applications, Japan. J. Math. 3 (2008) 215–246. DOI: 10.1007/s11537-008-0819-3Google Scholar
  21. 21.
    M. Ðurđevich, Geometry of quantum principal bundles I, Commun. Math. Phys. 175 (1996) 457–520.CrossRefGoogle Scholar
  22. 22.
    M. Ðurđevich, Geometry of quantum principal bundles II, extended version, Rev. Math. Phys. 9, No. 5 (1997) 531–607.MathSciNetCrossRefGoogle Scholar
  23. 23.
    M. Ðurđevich, Differential structures on quantum principal bundles, Rep. Math. Phys. 41 (1998) 91–115.MathSciNetCrossRefGoogle Scholar
  24. 24.
    M. Ðurđevich, Quantum principal bundles as Hopf–Galois extensions, Acad. Res. 23 (2009) 41–49.Google Scholar
  25. 25.
    M. Ðurđevich, Characteristic classes of quantum principal bundles, Alg. Groups Geom. 26 (2009) 241–341.Google Scholar
  26. 26.
    M. Ðurđevich, Geometry of quantum principal bundles III, Alg. Groups Geom. 27 (2010) 247–336.Google Scholar
  27. 27.
    M. Ðurđevich, Quantum classifying spaces and universal quantum characteristic classes, Banach Center Publ. 40 (1997) 315–327.Google Scholar
  28. 28.
    M. Ðurđevich, General frame structures on quantum principal bundles, Rep. Math. Phys. 44 (1999) 53–70.MathSciNetCrossRefGoogle Scholar
  29. 29.
    M. Ðurđevich, Quantum principal bundles and corresponding gauge theories, J. Physics A: Math. Gen. 30 (1997) 2027–2054.CrossRefGoogle Scholar
  30. 30.
    M. Ðurđevich, Quantum gauge transformations and braided structure on quantum principal bundles, Misc. Alg. 5 (2001) 5–30.Google Scholar
  31. 31.
    M. Ðurđevich and S.B. Sontz, Dunkl operators as covariant derivatives in a quantum principal bundle, SIGMA 9 (2013), 040, 29 pages. http://dx.doi.org/10.3842/SIGMA.2013.040
  32. 32.
    D. Eisenbud, Commutative Algebra: With a View Towards Algebraic Geometry, Springer, 1995.Google Scholar
  33. 33.
    P. Etingof, Calogero–Moser Systems and Representation Theory, Euro. Math. Soc., 2007.Google Scholar
  34. 34.
    R.P. Feynman, Feynman’s Office: The Last Blackboards, Phys. Today, 42, No. 2, (1989) p. 88.Google Scholar
  35. 35.
    G.B. Folland, Quantum Field Theory, A Tourist Guide for Mathematicians, Math. Surv. Mono. 149, Am. Math. Soc. (2008).Google Scholar
  36. 36.
    L.C. Grove and C.T. Benson, Finite Reflection Groups, Springer, 1985.Google Scholar
  37. 37.
    P.M. Hajac, Strong connections on quantum principal bundles, Commun. Math. Phys. 182 (1996) 579–617.zbMATHMathSciNetCrossRefGoogle Scholar
  38. 38.
    P.M. Hajac and S. Majid, Projective module description of the q-monopole, Commun. Math. Phys. 206 (1999) 247–264.zbMATHMathSciNetCrossRefGoogle Scholar
  39. 39.
    S. Helgason, Differential Geometry and Symmetric Spaces, Academic Press, 1962.Google Scholar
  40. 40.
    J.E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990.Google Scholar
  41. 41.
    T.W. Hungerford, Algebra, Springer, 1974.Google Scholar
  42. 42.
    J.C. Jantzen, Lectures on Quantum Groups, Am. Math. Soc., 1996.Google Scholar
  43. 43.
    M. Jimbo, A q-difference analogue of \(U(\mathfrak{g})\) and the Yang–Baxter equation, Lett. Math. Phys. 10 (1985) 63–69.zbMATHMathSciNetCrossRefGoogle Scholar
  44. 44.
    M. Jimbo, A q-analog of \(U(\mathfrak{g}\mathfrak{l}(N + 1))\), Hecke algebras and the Yang–Baxter equation, Lett. Math. Phys. 11 (1986) 247–252.zbMATHMathSciNetCrossRefGoogle Scholar
  45. 45.
    C. Kassel, Quantum Groups, Springer, 1995.Google Scholar
  46. 46.
    C. Kassel and V. Turaev, Braid Groups, Springer, 2008.Google Scholar
  47. 47.
    M. Khalkhali, Basic Noncommutative Geometry, Eur. Math. Soc., 2009.Google Scholar
  48. 48.
    A. Klimyk and K. Schmudgen, Quantum Groups and Their Representations, Springer, 1997.Google Scholar
  49. 49.
    S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. I, John Wiley & Sons, 1963.Google Scholar
  50. 50.
    L.I. Korogodski and Y.S. Soibelman, Algebras of Functions on Quantum Groups: Part I, Am. Math. Soc., 1998.Google Scholar
  51. 51.
    P.P. Kulish and N.Yu. Reshetikhin, Quantum linear problem for the sine–Gordon equation and higher representations, Zap. Nauch. Sem. LOMI 101 (1981) 101–110.MathSciNetGoogle Scholar
  52. 52.
    G. Landi, C. Pagani, and C. Reina, A Hopf bundle over a quantum four-sphere from the symplectic group, Commun. Math. Phys. 263 (2006) 65–88.zbMATHMathSciNetCrossRefGoogle Scholar
  53. 53.
    G. Lusztig, Introduction to Quantum Groups, Birkhäuser, 1993.Google Scholar
  54. 54.
    J. Madore, An Introduction to Noncommutative Differential Geometry and Its Physical Applications, Cambridge University Press, 1995.Google Scholar
  55. 55.
    S. Majid, Foundations of Quantum Group Theory, Cambridge University Press, 1995.Google Scholar
  56. 56.
    Yu. Manin, Quantum Groups and Non-Commutative Geometry, CRM, 1988.Google Scholar
  57. 57.
    Yu. Manin, Topics in Noncommutative Geometry, Princeton University Press, 1991.Google Scholar
  58. 58.
    E.H. Moore, Concerning the abstract group of order k! and \(\frac{1} {2}k!\ldots\), Proc. London Math. Soc. (1) 28 (1897) 357–366.Google Scholar
  59. 59.
    F.J. Murray and J. von Neumann, On rings of operators, Ann. Math. 37 (1936) 116–229.CrossRefGoogle Scholar
  60. 60.
    F.J. Murray and J. von Neumann, On rings of operators 2, Trans. Amer. Math. Soc. 41 (1937) 208–248.MathSciNetCrossRefGoogle Scholar
  61. 61.
    F.J. Murray and J. von Neumann, On rings of operators 4, Ann. Math. 44 (1943) 716–808.zbMATHCrossRefGoogle Scholar
  62. 62.
    J. von Neumann, On rings of operators III, Ann. Math. 41 (1940) 94–161.CrossRefGoogle Scholar
  63. 63.
    M. Noumi and K. Mimachi, Quantum 2-spheres and big q-Jacobi polynomials, Commun. Math. Phys. 128 (1990) 521–531.zbMATHMathSciNetCrossRefGoogle Scholar
  64. 64.
    B. Parshall and J. Wang, Quantum linear groups, Mem. Am. Math. Soc. 439 1991.Google Scholar
  65. 65.
    M. Pflaum, Quantum groups on fibre bundles, Commun. Math. Phys. 166 (1994) 279.zbMATHMathSciNetCrossRefGoogle Scholar
  66. 66.
    P. Podles, Quantum spheres, Lett. Math. Phys. 14 (1987) 193–202.zbMATHMathSciNetCrossRefGoogle Scholar
  67. 67.
    N.Yu. Reshetikhin, L.A. Takhtadjian, and L.D. Faddeev, Quantization of Lie groups and Lie algebras, Leningrad Math. J. 1 (1990) 193–225.zbMATHMathSciNetGoogle Scholar
  68. 68.
    M. Rösler, Dunkl operators: theory and applications, in Orthogonal Polynomials and Special Functions (Leuven, 2002), Lecture Notes in Math., Vol. 1817, Springer, Berlin, 2003, 93–135. math.CA/0210366.Google Scholar
  69. 69.
    M. Rösler, Generalized Hermite polynomials and the heat equation for Dunkl operators, Commum. Math. Phys. 192 (1998) 519–542. q-alg/9703006.Google Scholar
  70. 70.
    M. Rösler and M. Voit, Markov processes related with Dunkl operators, Adv. in Appl. Math. 21 (1998) 575–643.zbMATHMathSciNetCrossRefGoogle Scholar
  71. 71.
    H.J. Schneider, Principal homogeneous spaces for arbitrary Hopf algebras, Isr. J. Math. 72 (1990) 167–195.zbMATHCrossRefGoogle Scholar
  72. 72.
    H.J. Schneider, Hopf–Galois extensions, cross products, and Clifford theory, Eds. J. Bergen et al., Advances in Hopf Algebras. Conference, August 10–14, 1992, Chicago. New York: Marcel Dekker. Lect. Notes Pure Appl. Math. 158 (1994) 267–297.Google Scholar
  73. 73.
    S. Shnider and S. Sternberg, Quantum Groups: From Coalgebras to Drinfeld Algebras, International Press, 1993.Google Scholar
  74. 74.
    E.K. Sklyanin, Some algebraic structures connected with the Yang–Baxter equation, Funct. Anal. Appl. 17 (1983) 273–284.zbMATHMathSciNetCrossRefGoogle Scholar
  75. 75.
    S.B. Sontz, On Segal-Bargmann analysis for finite Coxeter groups and its heat kernel, Math. Z. 269 (2011) 9–28.zbMATHMathSciNetCrossRefGoogle Scholar
  76. 76.
    S.B. Sontz, Principal Bundles: The Classical Case, in preparation.Google Scholar
  77. 77.
    B. Sutherland, Exact results for a quantum many-body problem in one-dimension. II, Phys. Rev. A 5 (1972) 1372–1376.Google Scholar
  78. 78.
    M.E. Sweedler, Hopf Algebras, W.A. Benjamin, New York, 1969.Google Scholar
  79. 79.
    M. Takeuchi, Quantum orthogonal and symplectic groups and their embedding into quantum GL, Proc. Japan Acad. Ser. A Math. Sci. 65 (1989) 55–58.zbMATHMathSciNetCrossRefGoogle Scholar
  80. 80.
    T. Timmermann, An Invitation to Quantum Groups and Duality, Euro. Math. Soc., 2008.Google Scholar
  81. 81.
    L.L. Vaksman and Y.S. Soibelman, Algebra of functions on the quantum group SU(2), Funct. Anal. Appl. 22 (1988) 170–181.zbMATHMathSciNetCrossRefGoogle Scholar
  82. 82.
    J.C. Varilly, An Introduction to Noncommutative Geometry, Eur. Math. Soc., 2006.Google Scholar
  83. 83.
    S.L. Woronowicz, Pseudospaces, pseudogroups, and Pontryagin duality, in: Proceedings of the International Conference on Mathematics and Physics, Lausanne 1979, Lecture Notes in Physics, Vol. 116, pp. 407–412, Springer, 1980.Google Scholar
  84. 84.
    S.L. Woronowicz, Compact matrix pseudogroups, Commun. Math. Phys. 111 (1987) 613–665.zbMATHMathSciNetCrossRefGoogle Scholar
  85. 85.
    S.L. Woronowicz, Twisted SU(2) group. an example of a non-commutative differential calculus, Publ. RIMS., Kyoto Univ. 23 (1987) 117–181.Google Scholar
  86. 86.
    S.L. Woronowicz, Differential calculus on compact matrix pseudogroups (quantum groups), Commun. Math. Phys. 122 (1989) 125–170.zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Stephen Bruce Sontz
    • 1
  1. 1.Centro de Investigación en Matemáticas, A.C.GuanajuatoMexico

Personalised recommendations