Advertisement

Quantum Principal Bundles

  • Stephen Bruce Sontz
Part of the Universitext book series (UTX)

Abstract

The importance of the role of principal fiber bundles in classical differential geometry and physics is well established. We now consider the generalization of this structure in the context of noncommutative geometry. The material in this chapter is based on several of Micho Ðurđevich’s papers (see especially [22] and [26] but also [21] and [23]).

Bibliography

  1. 3.
    P.F. Baum, P.M Hajac, R. Matthes, and W. Szymański, Noncommutative geometry approach to principal and associated bundles, to appear in Quantum Symmetries in Noncommutative Geometry (P. M. Hajac, ed.) 2007. arXiv:math/0701033.Google Scholar
  2. 4.
    P.F. Baum, K. De Commer, and P.M. Hajac, Free Actions of Compact Quantum Groups on Unital C -algebras, arXiv:1304.2812v1Google Scholar
  3. 6.
    T. Brzeziński and S. Majid, Quantum group gauge theory on quantum spaces, Commun. Math. Phys. 157 (1993) 591–638. Erratum: Commun. Math. Phys. 167 (1995) 235.Google Scholar
  4. 7.
    T. Brzeziński, Quantum Fibre Bundles. An Introduction. (1995) arXiv:q-alg/9508008.Google Scholar
  5. 8.
    T. Brzeziński, Translation map in quantum principal bundles, J. Geom. Phys. 20 (1996) 349. arXiv:hep-th/9407145v2.Google Scholar
  6. 9.
    T. Brzeziński and P.M. Hajac, The Chern–Galois character, C. R. Acad. Sci. Paris, Ser. I 338 (2004) 113–116.Google Scholar
  7. 10.
    T. Brzezinski and P.M. Hajac, Galois-Type Extensions and Equivariant Projectivity, arXiv:0901.0141Google Scholar
  8. 13.
    A. Connes, Noncommutative Geometry, Academic Press, 1994.Google Scholar
  9. 16.
    M. Dubois-Violette, Dérivations et calcul differentiel non commutatif, C.R. Acad. Sci. Paris, 307 I (1988) 403–408.Google Scholar
  10. 18.
    M. Dubois-Violette, R. Kerner, and J. Madore, Noncommutative differential geometry and new models of gauge theory, J. Math. Phys. 31 (1990) 323–330.zbMATHMathSciNetCrossRefGoogle Scholar
  11. 21.
    M. Ðurđevich, Geometry of quantum principal bundles I, Commun. Math. Phys. 175 (1996) 457–520.CrossRefGoogle Scholar
  12. 22.
    M. Ðurđevich, Geometry of quantum principal bundles II, extended version, Rev. Math. Phys. 9, No. 5 (1997) 531–607.MathSciNetCrossRefGoogle Scholar
  13. 23.
    M. Ðurđevich, Differential structures on quantum principal bundles, Rep. Math. Phys. 41 (1998) 91–115.MathSciNetCrossRefGoogle Scholar
  14. 24.
    M. Ðurđevich, Quantum principal bundles as Hopf–Galois extensions, Acad. Res. 23 (2009) 41–49.Google Scholar
  15. 25.
    M. Ðurđevich, Characteristic classes of quantum principal bundles, Alg. Groups Geom. 26 (2009) 241–341.Google Scholar
  16. 26.
    M. Ðurđevich, Geometry of quantum principal bundles III, Alg. Groups Geom. 27 (2010) 247–336.Google Scholar
  17. 27.
    M. Ðurđevich, Quantum classifying spaces and universal quantum characteristic classes, Banach Center Publ. 40 (1997) 315–327.Google Scholar
  18. 28.
    M. Ðurđevich, General frame structures on quantum principal bundles, Rep. Math. Phys. 44 (1999) 53–70.MathSciNetCrossRefGoogle Scholar
  19. 29.
    M. Ðurđevich, Quantum principal bundles and corresponding gauge theories, J. Physics A: Math. Gen. 30 (1997) 2027–2054.CrossRefGoogle Scholar
  20. 31.
    M. Ðurđevich and S.B. Sontz, Dunkl operators as covariant derivatives in a quantum principal bundle, SIGMA 9 (2013), 040, 29 pages. http://dx.doi.org/10.3842/SIGMA.2013.040
  21. 35.
    G.B. Folland, Quantum Field Theory, A Tourist Guide for Mathematicians, Math. Surv. Mono. 149, Am. Math. Soc. (2008).Google Scholar
  22. 37.
    P.M. Hajac, Strong connections on quantum principal bundles, Commun. Math. Phys. 182 (1996) 579–617.zbMATHMathSciNetCrossRefGoogle Scholar
  23. 38.
    P.M. Hajac and S. Majid, Projective module description of the q-monopole, Commun. Math. Phys. 206 (1999) 247–264.zbMATHMathSciNetCrossRefGoogle Scholar
  24. 39.
    S. Helgason, Differential Geometry and Symmetric Spaces, Academic Press, 1962.Google Scholar
  25. 45.
    C. Kassel, Quantum Groups, Springer, 1995.Google Scholar
  26. 48.
    A. Klimyk and K. Schmudgen, Quantum Groups and Their Representations, Springer, 1997.Google Scholar
  27. 49.
    S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. I, John Wiley & Sons, 1963.Google Scholar
  28. 52.
    G. Landi, C. Pagani, and C. Reina, A Hopf bundle over a quantum four-sphere from the symplectic group, Commun. Math. Phys. 263 (2006) 65–88.zbMATHMathSciNetCrossRefGoogle Scholar
  29. 63.
    M. Noumi and K. Mimachi, Quantum 2-spheres and big q-Jacobi polynomials, Commun. Math. Phys. 128 (1990) 521–531.zbMATHMathSciNetCrossRefGoogle Scholar
  30. 65.
    M. Pflaum, Quantum groups on fibre bundles, Commun. Math. Phys. 166 (1994) 279.zbMATHMathSciNetCrossRefGoogle Scholar
  31. 66.
    P. Podles, Quantum spheres, Lett. Math. Phys. 14 (1987) 193–202.zbMATHMathSciNetCrossRefGoogle Scholar
  32. 71.
    H.J. Schneider, Principal homogeneous spaces for arbitrary Hopf algebras, Isr. J. Math. 72 (1990) 167–195.zbMATHCrossRefGoogle Scholar
  33. 72.
    H.J. Schneider, Hopf–Galois extensions, cross products, and Clifford theory, Eds. J. Bergen et al., Advances in Hopf Algebras. Conference, August 10–14, 1992, Chicago. New York: Marcel Dekker. Lect. Notes Pure Appl. Math. 158 (1994) 267–297.Google Scholar
  34. 76.
    S.B. Sontz, Principal Bundles: The Classical Case, in preparation.Google Scholar
  35. 84.
    S.L. Woronowicz, Compact matrix pseudogroups, Commun. Math. Phys. 111 (1987) 613–665.zbMATHMathSciNetCrossRefGoogle Scholar
  36. 86.
    S.L. Woronowicz, Differential calculus on compact matrix pseudogroups (quantum groups), Commun. Math. Phys. 122 (1989) 125–170.zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Stephen Bruce Sontz
    • 1
  1. 1.Centro de Investigación en Matemáticas, A.C.GuanajuatoMexico

Personalised recommendations