Skip to main content

Higher-Order Differential Calculi

  • Chapter
  • 2429 Accesses

Part of the book series: Universitext ((UTX))

Abstract

In this section, we will construct a higher-order differential calculus (HODC) provided that we are given a first-order differential calculus (FODC). This construction will be a functor. What we will construct are the differentials in the braided exterior algebra that are analogous to the de Rham differentials in the classical case.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   29.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   39.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Bibliography

  1. E. Abe, Hopf Algebras, Cambridge Tracts in Mathematics, 74, Cambridge University Press, 1980.

    Google Scholar 

  2. E. Artin, Theorie de Zöpfe, Abh. Math. Sem. Univ. Hamburg 4 (1925) 47–72.

    Article  MATH  MathSciNet  Google Scholar 

  3. P.F. Baum, P.M Hajac, R. Matthes, and W. Szymański, Noncommutative geometry approach to principal and associated bundles, to appear in Quantum Symmetries in Noncommutative Geometry (P. M. Hajac, ed.) 2007. arXiv:math/0701033.

    Google Scholar 

  4. P.F. Baum, K. De Commer, and P.M. Hajac, Free Actions of Compact Quantum Groups on Unital C -algebras, arXiv:1304.2812v1

    Google Scholar 

  5. B. Blackadar, Operator Algebras, Springer, 2006.

    Google Scholar 

  6. T. Brzeziński and S. Majid, Quantum group gauge theory on quantum spaces, Commun. Math. Phys. 157 (1993) 591–638. Erratum: Commun. Math. Phys. 167 (1995) 235.

    Google Scholar 

  7. T. Brzeziński, Quantum Fibre Bundles. An Introduction. (1995) arXiv:q-alg/9508008.

    Google Scholar 

  8. T. Brzeziński, Translation map in quantum principal bundles, J. Geom. Phys. 20 (1996) 349. arXiv:hep-th/9407145v2.

    Google Scholar 

  9. T. Brzeziński and P.M. Hajac, The Chern–Galois character, C. R. Acad. Sci. Paris, Ser. I 338 (2004) 113–116.

    Google Scholar 

  10. T. Brzezinski and P.M. Hajac, Galois-Type Extensions and Equivariant Projectivity, arXiv:0901.0141

    Google Scholar 

  11. V. Chari and A. Pressley, A Guide to Quantum Groups, Cambridge University Press, 1994.

    Google Scholar 

  12. A. Connes, Noncommutative differential geometry, Inst. Hautes Études Sci. Publ. Math. 62 (1985) 257–360.

    Article  MathSciNet  Google Scholar 

  13. A. Connes, Noncommutative Geometry, Academic Press, 1994.

    Google Scholar 

  14. C. Davis and E.W. Ellers, eds., The Coxeter Legacy, Reflections and Projections, Am. Math. Soc., 2006.

    Google Scholar 

  15. V.G. Drinfeld, Hopf algebras and the quantum Yang–Baxter equation, Soviet Math. Dokl. 32 (1985) 254–258.

    Google Scholar 

  16. M. Dubois-Violette, Dérivations et calcul differentiel non commutatif, C.R. Acad. Sci. Paris, 307 I (1988) 403–408.

    Google Scholar 

  17. M. Dubois-Violette, R. Kerner, and J. Madore, Noncommutative differential geometry of matrix algebras, J. Math. Phys. 31 (1990) 316–322.

    Article  MATH  MathSciNet  Google Scholar 

  18. M. Dubois-Violette, R. Kerner, and J. Madore, Noncommutative differential geometry and new models of gauge theory, J. Math. Phys. 31 (1990) 323–330.

    Article  MATH  MathSciNet  Google Scholar 

  19. C.F. Dunkl, Differential difference operators associated to reflection groups, Trans. Am. Math. Soc. 311 (1989) 167–183.

    Article  MATH  MathSciNet  Google Scholar 

  20. C.F. Dunkl, Reflection groups for analysis and applications, Japan. J. Math. 3 (2008) 215–246. DOI: 10.1007/s11537-008-0819-3

    Google Scholar 

  21. M. Ðurđevich, Geometry of quantum principal bundles I, Commun. Math. Phys. 175 (1996) 457–520.

    Article  Google Scholar 

  22. M. Ðurđevich, Geometry of quantum principal bundles II, extended version, Rev. Math. Phys. 9, No. 5 (1997) 531–607.

    Article  MathSciNet  Google Scholar 

  23. M. Ðurđevich, Differential structures on quantum principal bundles, Rep. Math. Phys. 41 (1998) 91–115.

    Article  MathSciNet  Google Scholar 

  24. M. Ðurđevich, Quantum principal bundles as Hopf–Galois extensions, Acad. Res. 23 (2009) 41–49.

    Google Scholar 

  25. M. Ðurđevich, Characteristic classes of quantum principal bundles, Alg. Groups Geom. 26 (2009) 241–341.

    Google Scholar 

  26. M. Ðurđevich, Geometry of quantum principal bundles III, Alg. Groups Geom. 27 (2010) 247–336.

    Google Scholar 

  27. M. Ðurđevich, Quantum classifying spaces and universal quantum characteristic classes, Banach Center Publ. 40 (1997) 315–327.

    Google Scholar 

  28. M. Ðurđevich, General frame structures on quantum principal bundles, Rep. Math. Phys. 44 (1999) 53–70.

    Article  MathSciNet  Google Scholar 

  29. M. Ðurđevich, Quantum principal bundles and corresponding gauge theories, J. Physics A: Math. Gen. 30 (1997) 2027–2054.

    Article  Google Scholar 

  30. M. Ðurđevich, Quantum gauge transformations and braided structure on quantum principal bundles, Misc. Alg. 5 (2001) 5–30.

    Google Scholar 

  31. M. Ðurđevich and S.B. Sontz, Dunkl operators as covariant derivatives in a quantum principal bundle, SIGMA 9 (2013), 040, 29 pages. http://dx.doi.org/10.3842/SIGMA.2013.040

  32. D. Eisenbud, Commutative Algebra: With a View Towards Algebraic Geometry, Springer, 1995.

    Google Scholar 

  33. P. Etingof, Calogero–Moser Systems and Representation Theory, Euro. Math. Soc., 2007.

    Google Scholar 

  34. R.P. Feynman, Feynman’s Office: The Last Blackboards, Phys. Today, 42, No. 2, (1989) p. 88.

    Google Scholar 

  35. G.B. Folland, Quantum Field Theory, A Tourist Guide for Mathematicians, Math. Surv. Mono. 149, Am. Math. Soc. (2008).

    Google Scholar 

  36. L.C. Grove and C.T. Benson, Finite Reflection Groups, Springer, 1985.

    Google Scholar 

  37. P.M. Hajac, Strong connections on quantum principal bundles, Commun. Math. Phys. 182 (1996) 579–617.

    Article  MATH  MathSciNet  Google Scholar 

  38. P.M. Hajac and S. Majid, Projective module description of the q-monopole, Commun. Math. Phys. 206 (1999) 247–264.

    Article  MATH  MathSciNet  Google Scholar 

  39. S. Helgason, Differential Geometry and Symmetric Spaces, Academic Press, 1962.

    Google Scholar 

  40. J.E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990.

    Google Scholar 

  41. T.W. Hungerford, Algebra, Springer, 1974.

    Google Scholar 

  42. J.C. Jantzen, Lectures on Quantum Groups, Am. Math. Soc., 1996.

    Google Scholar 

  43. M. Jimbo, A q-difference analogue of \(U(\mathfrak{g})\) and the Yang–Baxter equation, Lett. Math. Phys. 10 (1985) 63–69.

    Article  MATH  MathSciNet  Google Scholar 

  44. M. Jimbo, A q-analog of \(U(\mathfrak{g}\mathfrak{l}(N + 1))\), Hecke algebras and the Yang–Baxter equation, Lett. Math. Phys. 11 (1986) 247–252.

    Article  MATH  MathSciNet  Google Scholar 

  45. C. Kassel, Quantum Groups, Springer, 1995.

    Google Scholar 

  46. C. Kassel and V. Turaev, Braid Groups, Springer, 2008.

    Google Scholar 

  47. M. Khalkhali, Basic Noncommutative Geometry, Eur. Math. Soc., 2009.

    Google Scholar 

  48. A. Klimyk and K. Schmudgen, Quantum Groups and Their Representations, Springer, 1997.

    Google Scholar 

  49. S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. I, John Wiley & Sons, 1963.

    Google Scholar 

  50. L.I. Korogodski and Y.S. Soibelman, Algebras of Functions on Quantum Groups: Part I, Am. Math. Soc., 1998.

    Google Scholar 

  51. P.P. Kulish and N.Yu. Reshetikhin, Quantum linear problem for the sine–Gordon equation and higher representations, Zap. Nauch. Sem. LOMI 101 (1981) 101–110.

    MathSciNet  Google Scholar 

  52. G. Landi, C. Pagani, and C. Reina, A Hopf bundle over a quantum four-sphere from the symplectic group, Commun. Math. Phys. 263 (2006) 65–88.

    Article  MATH  MathSciNet  Google Scholar 

  53. G. Lusztig, Introduction to Quantum Groups, Birkhäuser, 1993.

    Google Scholar 

  54. J. Madore, An Introduction to Noncommutative Differential Geometry and Its Physical Applications, Cambridge University Press, 1995.

    Google Scholar 

  55. S. Majid, Foundations of Quantum Group Theory, Cambridge University Press, 1995.

    Google Scholar 

  56. Yu. Manin, Quantum Groups and Non-Commutative Geometry, CRM, 1988.

    Google Scholar 

  57. Yu. Manin, Topics in Noncommutative Geometry, Princeton University Press, 1991.

    Google Scholar 

  58. E.H. Moore, Concerning the abstract group of order k! and \(\frac{1} {2}k!\ldots\), Proc. London Math. Soc. (1) 28 (1897) 357–366.

    Google Scholar 

  59. F.J. Murray and J. von Neumann, On rings of operators, Ann. Math. 37 (1936) 116–229.

    Article  Google Scholar 

  60. F.J. Murray and J. von Neumann, On rings of operators 2, Trans. Amer. Math. Soc. 41 (1937) 208–248.

    Article  MathSciNet  Google Scholar 

  61. F.J. Murray and J. von Neumann, On rings of operators 4, Ann. Math. 44 (1943) 716–808.

    Article  MATH  Google Scholar 

  62. J. von Neumann, On rings of operators III, Ann. Math. 41 (1940) 94–161.

    Article  Google Scholar 

  63. M. Noumi and K. Mimachi, Quantum 2-spheres and big q-Jacobi polynomials, Commun. Math. Phys. 128 (1990) 521–531.

    Article  MATH  MathSciNet  Google Scholar 

  64. B. Parshall and J. Wang, Quantum linear groups, Mem. Am. Math. Soc. 439 1991.

    Google Scholar 

  65. M. Pflaum, Quantum groups on fibre bundles, Commun. Math. Phys. 166 (1994) 279.

    Article  MATH  MathSciNet  Google Scholar 

  66. P. Podles, Quantum spheres, Lett. Math. Phys. 14 (1987) 193–202.

    Article  MathSciNet  Google Scholar 

  67. N.Yu. Reshetikhin, L.A. Takhtadjian, and L.D. Faddeev, Quantization of Lie groups and Lie algebras, Leningrad Math. J. 1 (1990) 193–225.

    MATH  MathSciNet  Google Scholar 

  68. M. Rösler, Dunkl operators: theory and applications, in Orthogonal Polynomials and Special Functions (Leuven, 2002), Lecture Notes in Math., Vol. 1817, Springer, Berlin, 2003, 93–135. math.CA/0210366.

    Google Scholar 

  69. M. Rösler, Generalized Hermite polynomials and the heat equation for Dunkl operators, Commum. Math. Phys. 192 (1998) 519–542. q-alg/9703006.

    Google Scholar 

  70. M. Rösler and M. Voit, Markov processes related with Dunkl operators, Adv. in Appl. Math. 21 (1998) 575–643.

    Article  MATH  MathSciNet  Google Scholar 

  71. H.J. Schneider, Principal homogeneous spaces for arbitrary Hopf algebras, Isr. J. Math. 72 (1990) 167–195.

    Article  MATH  Google Scholar 

  72. H.J. Schneider, Hopf–Galois extensions, cross products, and Clifford theory, Eds. J. Bergen et al., Advances in Hopf Algebras. Conference, August 10–14, 1992, Chicago. New York: Marcel Dekker. Lect. Notes Pure Appl. Math. 158 (1994) 267–297.

    Google Scholar 

  73. S. Shnider and S. Sternberg, Quantum Groups: From Coalgebras to Drinfeld Algebras, International Press, 1993.

    Google Scholar 

  74. E.K. Sklyanin, Some algebraic structures connected with the Yang–Baxter equation, Funct. Anal. Appl. 17 (1983) 273–284.

    Article  MATH  MathSciNet  Google Scholar 

  75. S.B. Sontz, On Segal-Bargmann analysis for finite Coxeter groups and its heat kernel, Math. Z. 269 (2011) 9–28.

    Article  MATH  MathSciNet  Google Scholar 

  76. S.B. Sontz, Principal Bundles: The Classical Case, in preparation.

    Google Scholar 

  77. B. Sutherland, Exact results for a quantum many-body problem in one-dimension. II, Phys. Rev. A 5 (1972) 1372–1376.

    Google Scholar 

  78. M.E. Sweedler, Hopf Algebras, W.A. Benjamin, New York, 1969.

    Google Scholar 

  79. M. Takeuchi, Quantum orthogonal and symplectic groups and their embedding into quantum GL, Proc. Japan Acad. Ser. A Math. Sci. 65 (1989) 55–58.

    Article  MATH  MathSciNet  Google Scholar 

  80. T. Timmermann, An Invitation to Quantum Groups and Duality, Euro. Math. Soc., 2008.

    Google Scholar 

  81. L.L. Vaksman and Y.S. Soibelman, Algebra of functions on the quantum group SU(2), Funct. Anal. Appl. 22 (1988) 170–181.

    Article  MATH  MathSciNet  Google Scholar 

  82. J.C. Varilly, An Introduction to Noncommutative Geometry, Eur. Math. Soc., 2006.

    Google Scholar 

  83. S.L. Woronowicz, Pseudospaces, pseudogroups, and Pontryagin duality, in: Proceedings of the International Conference on Mathematics and Physics, Lausanne 1979, Lecture Notes in Physics, Vol. 116, pp. 407–412, Springer, 1980.

    Google Scholar 

  84. S.L. Woronowicz, Compact matrix pseudogroups, Commun. Math. Phys. 111 (1987) 613–665.

    Article  MATH  MathSciNet  Google Scholar 

  85. S.L. Woronowicz, Twisted SU(2) group. an example of a non-commutative differential calculus, Publ. RIMS., Kyoto Univ. 23 (1987) 117–181.

    Google Scholar 

  86. S.L. Woronowicz, Differential calculus on compact matrix pseudogroups (quantum groups), Commun. Math. Phys. 122 (1989) 125–170.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sontz, S.B. (2015). Higher-Order Differential Calculi. In: Principal Bundles. Universitext. Springer, Cham. https://doi.org/10.1007/978-3-319-15829-7_10

Download citation

Publish with us

Policies and ethics