Skip to main content

Biomechanical Study of the Cervical Spine

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computational Vision and Biomechanics ((LNCVB,volume 21))

Abstract

The cervical spine is one of the most complex structures of the human skeleton. The knowledge of the cervical spine kinematics is a very important tool for many clinical applications such as diagnosis, treatment and surgical interventions and for the development of new spinal implants. The finite element method (FEM) is a well-known and widely used numerical method. In this study a three dimensional finite element (FE) model for the functional spine unit (FSU) C5-C6 was developed using computed tomography (CT) data. This model was used to study the internal stresses and strains of the intervertebral discs under static loading conditions of compression, extension, flexion, right lateral bending and left torsion. A hyperelastic constitutive model was used to describe the mechanical behavior of the nucleus pulposus. Maximum principal stresses in the disc were analyzed and higher values were found for the flexion movement. Maximum stresses in ligaments were observed for flexion and extension load cases.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. V. Moramarco, A. P. Palomar, C. Pappalettere, and M. Doblare, “An accurate validation of a computational model of a human lumbosacral segment.,” Journal of Biomechanics, vol. 43, pp. 334–342, 2010.

    Google Scholar 

  2. C. Calcavanti and J. L. Alves, “Understanding the role of the annulus fibrous in the biomechanics of the intervertebral disc,” in Proceeding of the 5th Portuguese Congress on Biomechanics, 2013.

    Google Scholar 

  3. J. A. Wheeldon, F. A. Pintar, S. Knowles, and N. Yoganandan, “Experimental flexion/extension data corridors for validation of finite element models of the young, normal cervical spine.,” Journal of biomechanics, vol. 39, pp. 375–380, Jan. 2006.

    Google Scholar 

  4. D. Stemper, N. Yoganandan, F. A. Pintar, and R. D. Rao, “Anterior longitudinal ligament injuries in whiplash may lead to cervical instability,” Medical Engineering & Physics, vol. 28, pp. 515–524, 2006.

    Google Scholar 

  5. K. Brolin and P. Halldin, “Development of a finite element model of the upper cervical spine and a parameter study of ligament characteristics,” Spine, vol. 29, pp. 376–385, 2004.

    Google Scholar 

  6. K. Brolin, P. Halldin, and I. Leijonhufvud, “The effect of muscle activation on neck response,” Traffic Injury Prevention, vol. 6, pp. 67–76, 2005.

    Google Scholar 

  7. D. M. Elliott and L. . Setton, “A linear material model for fiberinduced anisotropy of the annulus fibrosus,” Journal of Biomechanical Engineering, vol. 122, pp. 173–179, 2005.

    Google Scholar 

  8. S. M. Klish and J. C. Lotz, “Application of a fiber-reinforced continuum theory to multiple deformations of the annulus fibrosus,” Journal of Biomechanics, vol. 32, pp. 1027–1036, 1999.

    Google Scholar 

  9. V. K. Goel, E. Y. Kim, T. H. Lim, and J. N. Weinstein, “An analytical investigation of the mechanics of spinal instrumentation,” Spine, vol. 13, no. 1988, pp. 1003–1011.

    Google Scholar 

  10. A. P. Palomar, B. Calvo, and M. Doblare, “An accurate finite element model of the cervical spine under quasi-static loading,” Journal of Biomechanics, vol. 41, pp. 523–531, 2008.

    Google Scholar 

  11. N. Bogduk and S. Mercer, “Biomechanics of the cervical spine . I : Normal kinematics,” Clinical Biomechanics, vol. 15, pp. 633–648, 2000.

    Google Scholar 

  12. J. Wheeldon, B. D. Stemper, N. Yoganandan, and F. A. Pintar, “Validation of a finite element model of the young normal lower cervical spine.,” Annals of biomedical engineering, vol. 36, pp. 1458–69, Sep. 2008.

    Google Scholar 

  13. F. Galbusera, A. Fantigrossi, M. T. Raimondi, M. Sassi, M. Fornari, and R. Assietti, “Biomechanics of the C5-C6 spinal unit before and after placement of a disc prosthesis,” Biomechan.Model Mechanobiol, vol. 5, pp. 253–261, 2006.

    Google Scholar 

  14. A. Goel and V. Laheri, “Plate and Screw Fixation for Atlanto-Axial Subluxation,” Acta Neurochirurgia, pp. 47–53, 1994.

    Google Scholar 

  15. M. D. Nabil Ebraheim, “Posterior Lateral Mass Screw Fixation : Anatomic and Radiographic Considerations,” The University of Pennsylvania Orthopaedic Journal, vol. 12, pp. 66–72, 1999.

    Google Scholar 

  16. M. Aebi, “Surgical treatment of upper, middle and lower cervical injuries and non-unions by anterior procedures,” Eur Spine J., vol. 19, pp. 33–39, Mar. 2010.

    Google Scholar 

  17. A. Laville, S. Laporte, and W. Skalli, “Parametric and subject-specific finite element modelling of the lower cervical spine . Influence of geometrical parameters on the motion patterns,” Journal of Biomechanics, vol. 42, pp. 1409–1415, 2009.

    Google Scholar 

  18. J. D. Clausen, V. K. Goel, V. C. Traynelis, and J. Scifert, “Uncinate Processes and Luschka Joints Influence the Biomechanics of the Cervical Spine : Quantification Using a Finite Element Model of the C5C6 Segment,” Journal of Orthopaedic Research, vol. 15, pp. 342–347, 1997.

    Google Scholar 

  19. R. Seeley, T. Stephens, and P. Tate, Anatomia e fisiologia, 6aEdição ed. Lusociência - EdiçõesTécnicas e Científicas, Lda, 2003.

    Google Scholar 

  20. K. L. Moore and A. F. Dalley, Anatomia orientada para a clínica, 4a Edição. Lippincott Williams & Wilkins, 2006.

    Google Scholar 

  21. A. E. Castellvi, H. Huang, T. Vestgaarden, S. Saigal, D. H. Clabeaux, and D. Pienkowski, “Stress Reduction in Adjacent Level Discs via Dynamic Instrumentation: A Finite Element Analysis,” SAS Journal, vol. 1, no. 2, pp. 74–81, Jun. 2007.

    Google Scholar 

  22. H. Gray, Anatomy of the Human Body, 20aEdição ed. New York: Bartleby.com., 2000.

    Google Scholar 

  23. L. J. Smith and N. L. Fazzalari, “The elastic fibre network of the human lumbar anulus fibrosus: architecture, mechanical function and potential role in the progression of intervertebral disc degeneration,” Eur Spine J., pp. 18–439, 2009.

    Google Scholar 

  24. G. Denozière and D. N. Ku, “Biomechanical comparison between fusion of two vertebrae and implantation of an artificial intervertebral disc,” Journal of Biomechanics, vol. 39, 2006.

    Google Scholar 

  25. Cheung, J. Tak-Man, M. Zhang, and D. Chow, “Biomechanical responses of the intervertebral joints to static and vibrational loading: a finite element study,” Clinical Biomechanics, vol. 9, pp. 790–799, 2003.

    Google Scholar 

  26. N. Maurel, F. Lavaste, and W. Skalli, “A three-dimensional parameterized finite element model of the lower cervical spine . Study of the influence of the posterior articular facets,” Journal of Biomechanics, vol. 30, no. 9, 1997.

    Google Scholar 

  27. N. Yoganandan, S. Kumaresan, and F. A. Pintar, “Biomechanics of the cervical spine Part 2. Cervical spine soft tissue responses and biomechanical modeling.,” Clinical biomechanics, vol. 16, pp. 1–27, Jan. 2001.

    Google Scholar 

  28. M. Rodrigues, “Análise e projecto de estruturas para substituição do disco intervertebral.,” Faculdade de Ciências e Tecnologia, 2012.

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the collaborative work of the medical team from Centro Hospitalar de Vila Nova de Gaia, a public hospital of Portugal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatiana Teixeira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Teixeira, T., Sousa, L.C., Natal Jorge, R.M., Parente, M., Gonçalves, J.M., Freitas, R. (2015). Biomechanical Study of the Cervical Spine. In: Tavares, J., Natal Jorge, R. (eds) Computational and Experimental Biomedical Sciences: Methods and Applications. Lecture Notes in Computational Vision and Biomechanics, vol 21. Springer, Cham. https://doi.org/10.1007/978-3-319-15799-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15799-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15798-6

  • Online ISBN: 978-3-319-15799-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics