What Exists in the Scientific Literature About Biomechanical Models in Pelvic Floor?—a Systematic Review

  • Renato AndradeEmail author
  • Rui Viana
  • Sara Viana
  • Thuane da Roza
  • Teresa Mascarenhas
  • R. M. Natal Jorge
Conference paper
Part of the Lecture Notes in Computational Vision and Biomechanics book series (LNCVB, volume 21)


To date, several relevant models to the female pelvic support system have been built. Recently, scientific literature has demonstrated biomechanical models as an alternative to better understand and assess the pelvic floor muscles. Biomechanical modelling is a useful approach for investigate the association between pelvic floor defects and stress urinary incontinence or prolapse. Computational models are already a reality and in the future may represent a significant tool for the study of pelvic floor pathophysiology. However, only a few studies used biomechanical models to assess the pelvic floor muscles.


Pelvic floor Computational models Biomechanical model Female 



The authors gratefully acknowledge to the funding by CNPq—from Brazil government and the project Pest-OE/EME/LA0022/2013 and also to the project “Biomechanics: contributions to the healthcare”, reference NORTE-07-0124-FEDER-000035 co-financed by Programa Operacional Regional do Norte (ON.2—O Novo Norte), through the Fundo Europeu de Desenvolvimento Regional (FEDER).


  1. 1.
    Janda, Š., van der Helm, F. C., & de Blok, S. B. (2003). Measuring morphological parameters of the pelvic floor for finite element modelling purposes. Journal of biomechanics 36(6):749-757.Google Scholar
  2. 2.
    Parente, M. P., Natal Jorge, R. M., Mascarenhas, T., Fernandes, A. A., & Silva-Filho, A. L. (2010). Computational modeling approach to study the effects of fetal head flexion during vaginal delivery. American journal of obstetrics and gynecology 203(3):217-e1.Google Scholar
  3. 3.
    Venugopala Rao, G., Rubod, C., Brieu, M., Bhatnagar, N., & Cosson, M. (2010). Experiments and finite element modelling for the study of prolapse in the pelvic floor system. Computer methods in biomechanics and biomedical engineering13(3), 349-357.Google Scholar
  4. 4.
    Lien, K. C., Mooney, B., DeLancey, J. O., & Ashton-Miller, J. A. (2004). Levator ani muscle stretch induced by simulated vaginal birth. Obstetrics and gynecology103(1), 31.Google Scholar
  5. 5.
    Parente, M. P. L., Natal Jorge, R. M., Mascarenhas, T., Fernandes, A. A., & Martins, J. A. C. (2009). The influence of the material properties on the biomechanical behavior of the pelvic floor muscles during vaginal delivery. Journal of biomechanics42(9), 1301-1306.Google Scholar
  6. 6.
    Janda, S. (2006). Biomechanics of the pelvic floor musculature (Vol. 55, pp. 367-381).Google Scholar
  7. 7.
    Parente, M. P. L., Jorge, R. M., Mascarenhas, T., Fernandes, A. A., & Martins, J. A. C. (2009). The influence of an occipito-posterior malposition on the biomechanical behavior of the pelvic floor. European Journal of Obstetrics & Gynecology and Reproductive Biology144, S166-S169.Google Scholar
  8. 8.
    Li, X., Kruger, J. A., Nash, M. P., & Nielsen, P. M. (2011). Anisotropic effects of the levator ani muscle during childbirth. Biomechanics and modeling in mechanobiology10(4), 485-494.Google Scholar
  9. 9.
    Lien, K. C., DeLancey, J. O., & Ashton-Miller, J. A. (2009). Biomechanical analyses of the efficacy of patterns of maternal effort on second-stage progress.Obstetrics and gynecology113(4), 873.Google Scholar
  10. 10.
    Parente, M. P. L., Jorge, R. N., Mascarenhas, T., Fernandes, A. A., & Martins, J. A. C. (2008). Deformation of the pelvic floor muscles during a vaginal delivery. International Urogynecology Journal, 19(1), 65-71.Google Scholar
  11. 11.
    Pool-Goudzwaard, A., Hoek van Dijke, G., van Gurp, M., Mulder, P., Snijders, C., & Stoeckart, R. (2004). Contribution of pelvic floor muscles to stiffness of the pelvic ring. Clinical Biomechanics19(6), 564-571.Google Scholar
  12. 12.
    Noakes, K. F., Pullan, A. J., Bissett, I. P., & Cheng, L. K. (2008). Subject specific finite elasticity simulations of the pelvic floor. Journal of biomechanics,41(14), 3060-3065.Google Scholar
  13. 13.
    Noakes, K. F., Bissett, I. P., Pullan, A. J., & Cheng, L. K. (2006). Anatomically based computational models of the male and female pelvic floor and anal canal. In Engineering in Medicine and Biology Society, 2006. EMBS’06. 28th Annual International Conference of the IEEE (pp. 3815-3818). IEEE.Google Scholar
  14. 14.
    Yip, C., Kwok, E., Sassani, F., Jackson, R., & Cundiff, G. (2012). A biomechanical model to assess the contribution of pelvic musculature weakness to the development of stress urinary incontinence. Computer Methods in Biomechanics and Biomedical Engineering, (ahead-of-print), 1-14.Google Scholar
  15. 15.
    Chen, L., Ashton-Miller, J. A., Hsu, Y., & DeLancey, J. O. (2006). Interaction between Apical Supports and Levator Ani in Anterior Vaginal Support: Theoretical Analysis. Obstetrics and gynecology108(2), 324.Google Scholar
  16. 16.
    Martins, P. A., Jorge, R. M. N., Ferreia, A. J., Saleme, C. S., Roza, T., Parente, M. M., … & Silva-Filho, A. L. (2010). Vaginal Tissue Properties versus Increased Intra-Abdominal Pressure: A Preliminary Biomechanical Study. Gynecologic and obstetric investigation71(3), 145-150.Google Scholar
  17. 17.
    Noakes, K. F., Bissett, I. P., Pullan, A. J., & Cheng, L. K. (2008). Anatomically realistic three-dimensional meshes of the pelvic floor & anal canal for finite element analysis. Annals of biomedical engineering, 36(6), 1060-1071.Google Scholar
  18. 18.
    Kruger, J. A., Murphy, B. A., & Heap, S. W. (2005). Alterations in levator ani morphology in elite nulliparous athletes: a pilot study. Australian and New Zealand journal of obstetrics and gynaecology, 45(1), 42-47.Google Scholar
  19. 19.
    Kruger, J. A., Heap, S. W., Murphy, B. A., & Dietz, H. P. (2008). Pelvic floor function in nulliparous women using three-dimensional ultrasound and magnetic resonance imaging. Obstetrics & Gynecology, 111(3), 631-638.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Renato Andrade
    • 1
    Email author
  • Rui Viana
    • 1
    • 2
  • Sara Viana
    • 1
    • 2
  • Thuane da Roza
    • 3
    • 4
  • Teresa Mascarenhas
    • 5
  • R. M. Natal Jorge
    • 3
  1. 1.UFP—University of Fernando PessoaPortoPortugal
  2. 2.CHSJ:EPEPortoPortugal
  3. 3.IDMEC-Polo FEUP, Faculty of Engineering of University of PortoPortoPortugal
  4. 4.CIAFEL—Faculty of Sport of University of Porto, Research Centre in Physical ActivityHealth and LeisurePortoPortugal
  5. 5.Faculty of MedicineUniversity of PortoPortoPortugal

Personalised recommendations