Advertisement

Segmentation and 3D Reconstruction of Animal Tissues in Histological Images

  • Liliana Azevedo
  • Augusto M. R. Faustino
  • João Manuel R. S. Tavares
Conference paper
Part of the Lecture Notes in Computational Vision and Biomechanics book series (LNCVB, volume 21)

Abstract

Histology is considered the “gold standard” to access anatomical information at a cellular level. In histological studies, tissue samples are cut into very thin sections, stained, and observed under a microscope by a specialist. Such studies, mainly concerning tissue structures, cellular components and their interactions, can be useful to detect and diagnose certain pathologies. Thus, to find new techniques and computational solutions to assist this diagnosis, such as the 3D image based tissue reconstruction, is extremely interesting. In this chapter, a methodology to build 3D models from histological images is proposed, and the results obtained using this methodology in four experimental cases are presented and discussed based on quantitative and qualitative metrics.

Keywords

Histology Image analysis Image segmentation Image registration 

Notes

Acknowledgments

This work was partially done in the scope of the project with reference PTDC/BBB-BMD/3088/2012, financially supported by Fundação para a Ciência e a Tecnologia (FCT), in Portugal.

References

  1. 1.
    Alterovitz, R., Goldberg, K., Pouliot, J., Hsu, I., Kim, Y., Noworolski, S., & Kurhanewicz, J. (2006). Registration of MR prostate images with biomechanical modeling and nonlinear parameter estimation. Medical physics, 33(2), 446–454.Google Scholar
  2. 2.
    Alves, A. (2013). Joint Bilateral Upsampling. Retrieved January 2, 2013, from http://lvelho.impa.br/ip09/demos/jbu/filtros.html.
  3. 3.
  4. 4.
    Carneiro, J., & Junqueira, L. (2004). Histologia Básica. In G. K. S.A. (Ed.), Histologia Básica (10a edição., pp. 1–22).Google Scholar
  5. 5.
    Cooper, L. A. D. (2009). High Performance Image Analysis for Large Histological Datasets. Ohio State University.Google Scholar
  6. 6.
    Danilchenko, A., & Fitzpatrick, J. (2011). General approach to firstorder error prediction in rigid point registration. IEEE Transactions on Medical Imaging, 30(3), 679–693.Google Scholar
  7. 7.
    Egger, R., Narayanan, R., Helmstaedter, M., De Kock, C., & M., O. (2012). 3D reconstruction and standardization of the rat vibrissal cortex for precise registration of single neuron morphology. PLoS Computational Biology, 8(12), 1–18.Google Scholar
  8. 8.
    Gonzalez, Rafael C.,Woods, Richard E. & Eddins, S. L. (2004). Digital Image Processing Using MATLAB (pp. 100,194,195,200,205, 378,404–406). PEARSON, Prentice Hall. doi:0-13-008519.Google Scholar
  9. 9.
    He, L., Long, LR., Antani, S. & Thoma, G. (2009). Computer Assisted Diagnosis in Histopathology. (Vol. 3, pp. 272–287).Google Scholar
  10. 10.
    He, L., Long, LR., Antani, S., Thoma, G. (2010) Computer Assisted Diagnosis in Histopathology. In: Zhao, Z., (Ed). Sequence and Genome Analysis: Methods and Applications. iConcept Press; pp. 271–287.Google Scholar
  11. 11.
    Ivanovska, T., Schenk, A., Dahmen, U., Hahn, H. & Linsen, L. (2010). A fast and robust hepatocyte quantification algorithm including vein processing. BMC Bioinformatics., 11(1), 1–18.Google Scholar
  12. 12.
    Klein, A., Andersson, J., Ardekani, BA., Ashburner J., Avants, B., Chiang, MC., Christensen, GE., Collins, DL., Gee, J., Hellier, P., Song, JH., Jenkinson, M., Lepage, C., Rueckert, D., Thompson, P., Vercauteren, T., Woods, RP., Mann, JJ. & Parsey, R. (2009). Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration. NeuroImage, 46(3), 786–802.Google Scholar
  13. 13.
    Maintz, JBA. & Viergever, M. (1998). A survey of medical image registration. Medical Image Analysis, 2(1), 1–36.Google Scholar
  14. 14.
    Mathworks. (2013a). Estimate Geometric Transformation (R2013a). Retrieved March 4, 2013, from http://www.mathworks.com/help/vision/ref/estimategeometrictransformation.html.
  15. 15.
    Mathworks. (2013b). imregister (R2013a). Retrieved March 4, 2013, from http://www.mathworks.com/help/images/ref/imregister.html.
  16. 16.
    Mathworks. (2013c). Techniques for Visualizing Scalar Volume Data (R2013a). Retrieved April 6, 2013, from http://www.mathworks.com/help/matlab/visualize/techniques-for-visualizing-scalar-volume-data.html.
  17. 17.
    Mattes, D., Haynor, D., Vesselle, H., Lewellen, T., & Eubank, W. (2003). PET-CT image registration in the chest using free-form deformations. IEEE Transactions on Medical Imaging, 22(1), 120–128.Google Scholar
  18. 18.
    Mattes, D., Haynor, DR., Vesselle, H., Lewellyn, TK. & Eubank, W. (2001). Nonrigid multimodality image registration. IEEE Transactions on Medical Imaging, 4322, 1609–1620.Google Scholar
  19. 19.
    Oliveira, F. P. M. (2009). Emparelhamento e alinhamento de estruturas em visão computacional: aplicações em imagens médicas. Faculdade de Engenharia da Universidade do Porto.Google Scholar
  20. 20.
    Oliveira, F. P. M. & Tavares, J. M. R. S. (2011). Novel framework for registration of pedobarographic image data. Medical and Biological Engineering and Computing, 49(3), 312–324.Google Scholar
  21. 21.
    Oliveira, F. & Tavares, J. (2012). Medical image registration: a review. Computer Methods in Biomechanics and Biomedical Engineering, ISSN: 1025-5842 (print) - 1476-8259 (online), Taylor & Francis, 17(2), 73-93. doi:  10.1080/10255842.2012.670855.
  22. 22.
    Otsu, N. (1979). A Threshold Selection Method from Gray-Level Histograms. IEEE Transactions on Systems, Man and Cybernetics., 9(1), 62–66. doi: 10.1109/TSMC.1979.4310076.
  23. 23.
    Pluim, J., Maintz, J. & MA., V. (2000). Image registration by maximization of combinedmutual information and gradient information. IEEE Transactions on Medical Imaging, 19(8), 809–814.Google Scholar
  24. 24.
    Robert, s N., Magee, D., Song, Y., Brabazon, K., Shires, M., Crellin, D., Orsi, NM., Quirke, R., Quirke, P. & Treanor, D. (2012). Toward Routine Use of 3D Histopathology as a Research Tool. The American Journal of Pathology, 180(5), 1835–1842.Google Scholar
  25. 25.
    Sharma, R. & Katz, J. (2011). Taxotere Chemosensitivity Evaluation in Rat Breast Tumor by Multimodal Imaging: Quantitative Measurement by Fusion of MRI, PET Imaging with MALDI and Histology. IEEE Transactions on Medical Imaging, 1(1), 1–14.Google Scholar
  26. 26.
    Sharma, Y., Moffitt, RA., Stokes, TH., Chaudry, Q. & Wang, M. (2011). Feasibility analysis of high resolution tissue image registration using 3-D synthetic data. Journal of Pathology Informatics, 2(6), 1–7.Google Scholar
  27. 27.
    Stevens, A. & Lowe, J. (1992). HISTOLOGY. In Mosby (Ed.), (pp. 1–6).Google Scholar
  28. 28.
    Zhen, M., Tavares, J. M. R. S., Natal, R. J., & Mascarenhas, T. (2010). Review of Algorithms for Medical Image Segmentation and their Applications to the Female Pelvic Cavity. Computer Methods in Biomechanics and Biomedical Engineering, 13(2), 235–246. doi: 10.1080/10255840903131878.
  29. 29.
    Zitová, B. & Flusser, J. (2003). Image registration methods: a survey. Image and Vision Computing, 21(11), 977–1000.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Liliana Azevedo
    • 1
  • Augusto M. R. Faustino
    • 2
  • João Manuel R. S. Tavares
    • 1
  1. 1.Instituto de Engenharia Mecânica e Engenharia Industrial, Faculdade de EngenhariaUniversidade do PortoPortoPortugal
  2. 2.Instituto de Ciências Biomédicas Abel SalazarUniversidade do PortoPortoPortugal

Personalised recommendations