Skip to main content

Computer Image Registration Techniques Applied to Nuclear Medicine Images

  • Conference paper
  • First Online:
Computational and Experimental Biomedical Sciences: Methods and Applications

Abstract

Modern medicine has been using imaging as a fundamental tool in a wide range of applications. Consequently, the interest in automated registration of images from either the same or different modalities has increased. In this chapter, computer techniques of image registration are reviewed, and cover both their classification and the main steps involved. Moreover, the more common geometrical transforms, optimization and interpolation algorithms are described and discussed. The clinical applications examined emphases nuclear medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rao, A., Chandrashekara, R., Sanchez-Ortiz, G.I., Mohiaddin, R., Aljabar, P., Hajnal, J. V., Puri, B.K. & Rueckert, D. (2004). Spatial transformation of motion and deformation fields using nonrigid registration. Medical Imaging, IEEE Transactions on, 23(9), 1065-1076.

    Google Scholar 

  2. Fox, J.L., Rengan, R., O’Meara, W., Yorke, E., Erdi, Y., Nehmeh, S., Leibel, S. A. & Rosenzweig, K.E. (2005). Does registration of PET and planning CT images decrease interobserver and intraobserver variation in delineating tumor volumes for non–small-cell lung cancer?. International Journal of Radiation Oncology* Biology* Physics, 62(1), 70-75.

    Google Scholar 

  3. Maintz JBA, Viergever MA (1998) A survey of medical image registration methods. 2:1–36.

    Google Scholar 

  4. Hill, D. L., Batchelor, P. G., Holden, M., & Hawkes, D. J. (2001). Medical image registration. Physics in medicine and biology, 46(3), R1.

    Google Scholar 

  5. Pluim, J. P., & Fitzpatrick, J. M. (2003). Image registration. Medical Imaging, IEEE Transactions on, 22(11), 1341-1343.

    Google Scholar 

  6. Zitova, B., & Flusser, J. (2003). Image registration methods: a survey. Image and vision computing, 21(11), 977-1000.

    Google Scholar 

  7. Oliveira, F. P., Sousa, A., Santos, R., & Tavares, J. M. R. (2012). Towards an efficient and robust foot classification from pedobarographic images. Computer methods in biomechanics and biomedical engineering, 15(11), 1181-1188.

    Google Scholar 

  8. Oliveira, F. P., & Tavares, J. M. R. (2014). Medical image registration: a review. Computer methods in biomechanics and biomedical engineering, 17(2), 73-93.

    Google Scholar 

  9. Hutton, B. F., & Braun, M. (2003, July). Software for image registration: algorithms, accuracy, efficacy. In Seminars in nuclear medicine (Vol. 33, No. 3, pp. 180-192). WB Saunders.

    Google Scholar 

  10. Van den Elsen, P. A., Pol, E. J., & Viergever, M. A. (1993). Medical image matching-a review with classification. Engineering in Medicine and Biology Magazine, IEEE, 12(1), 26-39.

    Google Scholar 

  11. Zhang, H., Fritts, J. E., & Goldman, S. A. (2008). Image segmentation evaluation: A survey of unsupervised methods. computer vision and image understanding, 110(2), 260-280.

    Google Scholar 

  12. Crum WR (2004) Non-rigid image registration: theory and practice. British Journal of Radiology 77, S140–S153.

    Google Scholar 

  13. Holden, M. (2008). A review of geometric transformations for nonrigid body registration. Medical Imaging, IEEE Transactions on, 27(1), 111-128.

    Google Scholar 

  14. Hutton, B. F., Braun, M., Thurfjell, L., & Lau, D. Y. (2002). Image registration: an essential tool for nuclear medicine. European journal of nuclear medicine and molecular imaging, 29(4), 559-577.

    Google Scholar 

  15. Guo, Y., Sivaramakrishna, R., Lu, C. C., Suri, J. S., & Laxminarayan, S. (2006). Breast image registration techniques: a survey. Medical and Biological Engineering and Computing, 44(1-2), 15-26.

    Google Scholar 

  16. Toga, A. W., & Thompson, P. M. (2001). The role of image registration in brain mapping. Image and vision computing, 19(1), 3-24.

    Google Scholar 

  17. Gholipour, A., Kehtarnavaz, N., Briggs, R., Devous, M., & Gopinath, K. (2007). Brain functional localization: a survey of image registration techniques. Medical Imaging, IEEE Transactions on, 26(4), 427-451.

    Google Scholar 

  18. Mariani, G., Bruselli, L., Kuwert, T., Kim, E.E., Flotats, A., Israel, O., Dondi, M. & Watanabe, N.(2010). A review on the clinical uses of SPECT/CT. European journal of nuclear medicine and molecular imaging, 37(10), 1959-1985.

    Google Scholar 

  19. Maurer, C. R., & Fitzpatrick, J. M. (1993). A review of medical image registration. Interactive image-guided neurosurgery, 17.

    Google Scholar 

  20. Declerck, J., Feldmar, J., Goris, M. L., & Betting, F. (1997). Automatic registration and alignment on a template of cardiac stress and rest reoriented SPECT images. Medical Imaging, IEEE Transactions on, 16(6), 727-737.

    Google Scholar 

  21. Lee, E., & Gunzburger, M. (2010). An optimal control formulation of an image registration problem. Journal of mathematical imaging and vision, 36(1), 69-80.

    Google Scholar 

  22. Shafique, K., & Shah, M. (2005). A noniterative greedy algorithm for multiframe point correspondence. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 27(1), 51-65.

    Google Scholar 

  23. Shapiro, L. S., & Michael Brady, J. (1992). Feature-based correspondence: an eigenvector approach. Image and vision computing, 10(5), 283-288.

    Google Scholar 

  24. Leclerc, Y. G., Luong, Q. T., & Fua, P. (2003). Self-consistency and MDL: A paradigm for evaluating point-correspondence algorithms, and its application to detecting changes in surface elevation. International Journal of Computer Vision, 51(1), 63-83.

    Google Scholar 

  25. Johnson, H. J., & Christensen, G. E. (2002). Consistent landmark and intensity-based image registration. Medical Imaging, IEEE Transactions on, 21(5), 450-461.

    Google Scholar 

  26. Betke, M., Hong, H., Thomas, D., Prince, C., & Ko, J. P. (2003). Landmark detection in the chest and registration of lung surfaces with an application to nodule registration. Medical Image Analysis, 7(3), 265-281.

    Google Scholar 

  27. Audette, M. A., Ferrie, F. P., & Peters, T. M. (2000). An algorithmic overview of surface registration techniques for medical imaging. Medical Image Analysis, 4(3), 201-217.

    Google Scholar 

  28. Postelnicu, G., Zollei, L., & Fischl, B. (2009). Combined volumetric and surface registration. Medical Imaging, IEEE Transactions on, 28(4), 508-522.

    Google Scholar 

  29. Herline, A. J., Herring, J. L., Stefansic, J. D., Chapman, W. C., Galloway, R. L., & Dawant, B. M. (2000). Surface registration for use in interactive, image-guided liver surgery. Computer Aided Surgery, 5(1), 11-17.

    Google Scholar 

  30. Jia, J., & Tang, C. K. (2005). Tensor voting for image correction by global and local intensity alignment. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 27(1), 36-50.

    Google Scholar 

  31. Hurvitz, A., & Joskowicz, L. (2008). Registration of a CT-like atlas to fluoroscopic X-ray images using intensity correspondences. International journal of computer assisted radiology and surgery, 3(6), 493-504.

    Google Scholar 

  32. Wu, C., Murtha, P. E., & Jaramaz, B. (2009). Femur statistical atlas construction based on two-level 3D non-rigid registration. Computer Aided Surgery, 14(4-6), 83-99.

    Google Scholar 

  33. Zagorchev, L., & Goshtasby, A. (2006). A comparative study of transformation functions for nonrigid image registration. Image Processing, IEEE Transactions on, 15(3), 529-538.

    Google Scholar 

  34. Bronstein, A. M., Bronstein, M. M., & Kimmel, R. (2009). Topology-invariant similarity of nonrigid shapes. International journal of computer vision, 81(3), 281-301.

    Google Scholar 

  35. Budd, C., Huang, P., Klaudiny, M., & Hilton, A. (2013). Global non-rigid alignment of surface sequences. International Journal of Computer Vision, 102(1-3), 256-270.

    Google Scholar 

  36. Kadyrov, A., & Petrou, M. (2006). Affine parameter estimation from the trace transform. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 28(10), 1631-1645.

    Google Scholar 

  37. Ramsay, J. O., Hooker, G., Campbell, D., & Cao, J. (2007). Parameter estimation for differential equations: a generalized smoothing approach. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 69(5), 741-796.

    Google Scholar 

  38. Stefanescu, R., Pennec, X., & Ayache, N. (2004). Grid powered nonlinear image registration with locally adaptive regularization. Medical image analysis, 8(3), 325-342.

    Google Scholar 

  39. Sorzano, C. O., Thevenaz, P., & Unser, M. (2005). Elastic registration of biological images using vector-spline regularization. Biomedical Engineering, IEEE Transactions on, 52(4), 652-663.

    Google Scholar 

  40. Andreetto, M., Cortelazzo, G. M., & Lucchese, L. (2004, September). Frequency domain registration of computer tomography data. In 3D Data Processing, Visualization and Transmission, 2004. 3DPVT 2004. Proceedings. 2nd International Symposium on (pp. 550-557). IEEE.

    Google Scholar 

  41. Larrey-Ruiz, J., Verdú-Monedero, R., & Morales-Sánchez, J. (2008). A fourier domain framework for variational image registration. Journal of Mathematical Imaging and Vision, 32(1), 57-72.

    Google Scholar 

  42. Oliveira, F. P., Pataky, T. C., & Tavares, J. M. R. (2010). Registration of pedobarographic image data in the frequency domain. Computer methods in biomechanics and biomedical engineering, 13(6), 731-740.

    Google Scholar 

  43. Pan, W., Qin, K., & Chen, Y. (2009). An adaptable-multilayer fractional Fourier transform approach for image registration. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 31(3), 400-414.

    Google Scholar 

  44. Gefen, S., Tretiak, O., Bertrand, L., Rosen, G. D., & Nissanov, J. (2004). Surface alignment of an elastic body using a multiresolution wavelet representation. Biomedical Engineering, IEEE Transactions on, 51(7), 1230-1241.

    Google Scholar 

  45. Hajnal, J., Hill, D. L. G., & Hawkes, D. J. Medical image registration. (2001). Non rigid registration: concepts, algorithms and applications, 281-302.

    Google Scholar 

  46. Rueckert, D. (2001). Nonrigid registration: Concepts, algorithms, and applications. Medical Image Registration, 281-301.

    Google Scholar 

  47. Rogers, M., & Graham, J. (2007). Robust and accurate registration of 2-D electrophoresis gels using point-matching. Image Processing, IEEE Transactions on, 16(3), 624-635.

    Google Scholar 

  48. Šerifovic-Trbalic, A., Demirovic, D., Prljaca, N., Székely, G., & Cattin, P. C. (2009). Intensity-based elastic registration incorporating anisotropic landmark errors and rotational information. International journal of computer assisted radiology and surgery, 4(5), 463-468.

    Google Scholar 

  49. Bayro-Corrochano, E., & Rivera-Rovelo, J. (2009). The use of geometric algebra for 3D modeling and registration of medical data. Journal of Mathematical Imaging and Vision, 34(1), 48-60.

    Google Scholar 

  50. Reyes-Lozano, L., Medioni, G., & Bayro-Carrochano, E. (2010). Registration of 2d points using geometric algebra and tensor voting. Journal of Mathematical Imaging and Vision, 37(3), 249-266.

    Google Scholar 

  51. Fischer, B., & Modersitzki, J. (2004). A unified approach to fast image registration and a new curvature based registration technique. Linear Algebra and its applications, 380, 107-124.

    Google Scholar 

  52. Kybic, J., & Unser, M. (2003). Fast parametric elastic image registration. Image Processing, IEEE Transactions on, 12(11), 1427-1442.

    Google Scholar 

  53. Grosland, N. M., Bafna, R., & Magnotta, V. A. (2009). Automated hexahedral meshing of anatomic structures using deformable registration. Computer methods in biomechanics and biomedical engineering, 12(1), 35-43.

    Google Scholar 

  54. Tagare, H. D., Groisser, D., & Skrinjar, O. (2009). Symmetric non-rigid registration: A geometric theory and some numerical techniques. Journal of Mathematical Imaging and Vision, 34(1), 61-88.

    Google Scholar 

  55. Nielsen, M., Johansen, P., Jackson, A. D., Lautrup, B., & Hauberg, S. (2008). Brownian warps for non-rigid registration. Journal of Mathematical Imaging and Vision, 31(2-3), 221-231.

    Google Scholar 

  56. Sonka, M., & Fitzpatrick, J. M. (2000). Handbook of medical imaging (Volume 2, Medical image processing and analysis). SPIE- The international society for optical engineering.

    Google Scholar 

  57. Hoffer, P. B. (1995). Difference Images Calculated from Ictal and Interictal Technetium-. 99 m-HMPAO SPECIT Scans of Epilepsy.

    Google Scholar 

  58. Pluim, J. P., Maintz, J. A., & Viergever, M. A. (2003). Mutual-information-based registration of medical images: a survey. Medical Imaging, IEEE Transactions on, 22(8), 986-1004.

    Google Scholar 

  59. Seppa, M. (2008). Continuous sampling in mutual-information registration. Image Processing, IEEE Transactions on, 17(5), 823-826.

    Google Scholar 

  60. Collignon, A., Maes, F., Delaere, D., Vandermeulen, D., Suetens, P., & Marchal, G. (1995, June). Automated multi-modality image registration based on information theory. In Information processing in medical imaging (Vol. 3, No. 6, pp. 263-274).

    Google Scholar 

  61. Marques, J. S., & Abrantes, A. J. (1997). Shape alignment—optimal initial point and pose estimation. Pattern Recognition Letters, 18(1), 49-53.

    Google Scholar 

  62. Nguyen, M. H., & De la Torre, F. (2010). Metric learning for image alignment. International Journal of Computer Vision, 88(1), 69-84.

    Google Scholar 

  63. Marai, G. E., Laidlaw, D. H., & Crisco, J. J. (2006). Super-resolution registration using tissue-classified distance fields. Medical Imaging, IEEE Transactions on, 25(2), 177-187.

    Google Scholar 

  64. Telenczuk, B., Ledesma-Carbato, M. J., Velazquez-Muriel, J. A., Sorzano, C. O. S., Carazo, J. M., & Santos, A. (2006, April). Molecular image registration using mutual information and differential evolution optimization. In Biomedical Imaging: Nano to Macro, 2006. 3rd IEEE International Symposium on (pp. 844-847). IEEE.

    Google Scholar 

  65. Penney, G. P., Schnabel, J. A., Rueckert, D., Viergever, M. A., & Niessen, W. J. (2004). Registration-based interpolation. Medical Imaging, IEEE Transactions on, 23(7), 922-926.

    Google Scholar 

  66. Keeling, S. L. (2007). Generalized rigid and generalized affine image registration and interpolation by geometric multigrid. Journal of Mathematical Imaging and Vision, 29(2-3), 163-183.

    Google Scholar 

  67. Frakes, D. H., Dasi, L. P., Pekkan, K., Kitajima, H. D., Sundareswaran, K., Yoganathan, A. P., & Smith, M. J. (2008). A new method for registration-based medical image interpolation. Medical Imaging, IEEE Transactions on, 27(3), 370-377.

    Google Scholar 

  68. Zhang, X., & Wu, X. (2008). Image interpolation by adaptive 2-D autoregressive modeling and soft-decision estimation. Image Processing, IEEE Transactions on, 17(6), 887-896.

    Google Scholar 

  69. Oliveira, F. P., & Tavares, J. M. R. (2014). Medical image registration: a review. Computer methods in biomechanics and biomedical engineering, 17(2), 73-93.

    Google Scholar 

  70. Lee, J. S., Park, K. S., Lee, D. S., Lee, C. W., Chung, J. K., & Lee, M. C. (2005). Development and applications of a software for Functional Image Registration (FIRE). Computer methods and programs in biomedicine, 78(2), 157-164.

    Google Scholar 

  71. Dickson, J. C., Tossici-Bolt, L., Sera, T., Erlandsson, K., Varrone, A., Tatsch, K., & Hutton, B. F. (2010). The impact of reconstruction method on the quantification of DaTSCAN images. European journal of nuclear medicine and molecular imaging, 37(1), 23-35.

    Google Scholar 

  72. Mutic, S., Dempsey, J.F., Bosch, W.R., Low, D.A., Drzymala, R.E., Chao, K.S., Goddu, S.M., Cutler, P.D. & Purdy, J.A. (2001). Multimodality image registration quality assurance for conformal three-dimensional treatment planning. International Journal of Radiation Oncology* Biology* Physics, 51(1), 255-260.

    Google Scholar 

  73. Wiles AD, Likholyot A, Frantz DD, Peters TM (2008). A statistical model for point-based target registration error with anisotropic fiducial localizer error. IEEE transactions on medical imaging 27:378–90.

    Google Scholar 

  74. Oliveira, F. P., & Tavares, J. M. R. (2011). Novel framework for registration of pedobarographic image data. Medical & biological engineering & computing,49(3), 313-323.

    Google Scholar 

  75. Nicolau, S., Pennec, X., Soler, L., & Ayache, N. (2003). Evaluation of a new 3D/2D registration criterion for liver radio-frequencies guided by augmented reality. In Surgery Simulation and Soft Tissue Modeling (pp. 270-283). Springer Berlin Heidelberg.

    Google Scholar 

  76. Wahl, R. L. (1999). To AC or not to AC: that is the question. Journal of Nuclear Medicine, 40(12), 2025-2028.

    Google Scholar 

  77. Stokking, R., Zuiderveld, K. J., Hulshoff Pol, H. E., Van Rijk, P. P., & Viergever, M. A. (1997). Normal fusion for three-dimensional integrated visualization of SPECT and magnetic resonance brain images. Journal of Nuclear Medicine, 38(4), 624-629.

    Google Scholar 

  78. Jacene, H. A., Goetze, S., Patel, H., Wahl, R. L., & Ziessman H. A. (2008). Advantages of Hybrid SPECT/CT vs SPECT alone. Open Med Imag J, 13(2), 67-79.

    Google Scholar 

  79. Bhargava, P., (2011). Overview of SPECT / CT Applications. 56th Annual Meeting of Southwestern chapter of the Society of Nuclear Medicine.

    Google Scholar 

  80. Townsend, D. W. (2008, May). Positron emission tomography/computed tomography. In Seminars in nuclear medicine (Vol. 38, No. 3, pp. 152-166). WB Saunders.

    Google Scholar 

  81. Gerasimou, G. P. (2006). Molecular imaging (SPECT and PET) in the evaluation of patients with movement disorders. Nuclear Medicine Review, 9(2), 147-153.

    Google Scholar 

  82. Slart, R. H., Tio, R. A., Zijlstra, F., & Dierckx, R. A. (2009). Diagnostic pathway of integrated SPECT/CT for coronary artery disease. European journal of nuclear medicine and molecular imaging, 36(11), 1829-1834.

    Google Scholar 

  83. Xue, Z., Shen, D., & Davatzikos, C. (2004). Determining correspondence in 3-D MR brain images using attribute vectors as morphological signatures of voxels. Medical Imaging, IEEE Transactions on, 23(10), 1276-1291.

    Google Scholar 

  84. Shekhar, R., Zagrodsky, V., Castro-Pareja, C. R., Walimbe, V., & Jagadeesh, J. M. (2003). High-Speed Registration of Three-and Four-dimensional Medical Images by Using Voxel Similarity 1. Radiographics, 23(6), 1673-1681.

    Google Scholar 

  85. Zaidi, H. (2006). Quantitative analysis in nuclear medicine imaging (pp. 141-165). New York: Springer.

    Google Scholar 

  86. Slomka, P. J., Radau, P., Hurwitz, G. A., & Dey, D. (2001). Automated three-dimensional quantification of myocardial perfusion and brain SPECT. Computerized medical imaging and graphics, 25(2), 153-164.

    Google Scholar 

  87. Hutton, B. F., Buvat, I., & Beekman, F. J. (2011). Review and current status of SPECT scatter correction. Physics in medicine and biology, 56(14), R85.

    Google Scholar 

  88. Garcia, E. V., Faber, T. L., Cooke, C. D., Folks, R. D., Chen, J., & Santana, C. (2007). The increasing role of quantification in clinical nuclear cardiology: the Emory approach. Journal of nuclear cardiology, 14(4), 420-432.

    Google Scholar 

  89. Cerqueira, M.D., Weissman, N.J., Dilsizian, V., Jacobs, A.K., Kaul, S., Laskey, W.K., Pennell, D.J., Rumberger, J.A., Ryan, T., Verani, M.S. (2002). Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart a statement for healthcare professionals from the cardiac imaging committee of the Council on Clinical Cardiology of the American Heart Association. Circulation, 105(4), 539-542.

    Google Scholar 

  90. Hesse, B., Lindhardt, T.B., Acampa, W., Anagnostopoulos, C., Ballinger, J., Bax, J.J., Edenbrandt, L., Flotats, A., Germano, G., Stopar, T.G., Franken, P., Kelion, A., Kjaer, A., Le Guludec, D., Ljungberg, M., Maenhout, A.F., Marcassa, C., Marving, J., McKiddie, F., Schaefer, W.M., Stegger, L. & Underwood, R. (2008). EANM/ESC guidelines for radionuclide imaging of cardiac function. European journal of nuclear medicine and molecular imaging, 35(4), 851-885.

    Google Scholar 

  91. Slomka, P. J., & Baum, R. P. (2009). Multimodality image registration with software: state-of-the-art. European journal of nuclear medicine and molecular imaging, 36(1), 44-55.

    Google Scholar 

  92. Cherry, S. R. (2009, September). Multimodality imaging: Beyond pet/ct and spect/ct. In Seminars in nuclear medicine (Vol. 39, No. 5, pp. 348-353). WB Saunders.

    Google Scholar 

  93. Hosntalab, M., Babapour-Mofrad, F., Monshizadeh, N., & Amoui, M. (2012). Automatic left ventricle segmentation in volumetric SPECT data set by variational level set. International journal of computer assisted radiology and surgery, 7(6), 837-843.

    Google Scholar 

  94. Behloul, F., Lelieveldt, B. P. F., Boudraa, A., Janier, M. F., Revel, D., & Reiber, J. H. C. (2001). Neuro-fuzzy systems for computer-aided myocardial viability assessment. Medical Imaging, IEEE Transactions on, 20(12), 1302-1313.

    Google Scholar 

  95. Germano, G., Kavanagh, P.B., Waechter, P., Areeda, J., Van Kriekinge, S., Sharir, T., Lewin, H.C. & Berman, D.S. (2000) A new algorithm for the quantitation of myocardial perfusion SPECT. I: technical principles and reproducibility. Journal of nuclear medicine?: official publication, Society of Nuclear Medicine 41, 712–9.

    Google Scholar 

  96. Sharir, T., Germano, G., Waechter, P.B., Kavanagh, P.B., Areeda, J.S., Gerlach J, Kang, X., Lewin, H.C. & Berman, D.S. (2000). A new algorithm for the quantitation of myocardial perfusion SPECT. II: validation and diagnostic yield. Journal of Nuclear Medicine, 41(4), 720-727.

    Google Scholar 

  97. Rudd, J.H., Warburton, E.A., Fryer, T.D., Jones, H.Á., Clark, J.C., Antoun, N., Johnström, P., Davenport, A.P., Kirkpatrick, P.J., Arch, B.N., Pickard, J.D., Weissberg, P.L. (2002). Imaging atherosclerotic plaque inflammation with [18F]-fluorodeoxyglucose positron emission tomography. Circulation, 105(23), 2708-2711.

    Google Scholar 

  98. Takalkar, A. M., El-Haddad, G., & Lilien, D. L. (2008). FDG-PET and PET/CT-Part II. The Indian journal of radiology & imaging, 18(1), 17.

    Google Scholar 

  99. Ci´žek, J., Herholz, K., Vollmar, S., Schrader, R., Klein, J., & Heiss, W. D. (2004). Fast and robust registration of PET and MR images of human brain. Neuroimage, 22(1), 434-442.

    Google Scholar 

  100. Fung, G., & Stoeckel, J. (2007). SVM feature selection for classification of SPECT images of Alzheimer’s disease using spatial information. Knowledge and Information Systems, 11(2), 243-258.

    Google Scholar 

  101. Buckner, R.L., Snyder, A.Z., Shannon, B.J., LaRossa, G., Sachs, R., Fotenos, A.F., Sheline, Y.I., Klunk, W.E., Mathis, C.A., Morris, J.C. & Mintun MA (2005). Molecular, structural, and functional characterization of Alzheimer’s disease: evidence for a relationship between default activity, amyloid, and memory. The Journal of Neuroscience, 25(34), 7709-7717.

    Google Scholar 

  102. Badiavas, K., Molyvda, E., Iakovou, I., Tsolaki, M., Psarrakos, K., & Karatzas, N. (2011). SPECT imaging evaluation in movement disorders: far beyond visual assessment. European journal of nuclear medicine and molecular imaging, 38(4), 764-773.

    Google Scholar 

Download references

Acknowledgments

This work was partially done in the scope of the project with reference PTDC/BBB-BMD/3088/2012, financially supported by Fundação para a Ciência e a Tecnologia (FCT), in Portugal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Manuel R. S. Tavares .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Alves, R.S., Tavares, J.M.R.S. (2015). Computer Image Registration Techniques Applied to Nuclear Medicine Images. In: Tavares, J., Natal Jorge, R. (eds) Computational and Experimental Biomedical Sciences: Methods and Applications. Lecture Notes in Computational Vision and Biomechanics, vol 21. Springer, Cham. https://doi.org/10.1007/978-3-319-15799-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15799-3_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15798-6

  • Online ISBN: 978-3-319-15799-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics