Skip to main content

Lianas as Structural Parasites

  • Chapter

Abstract

The “structural parasite” strategy is explored for lianas (woody vines). Since lianas grow upon host plants which provide mechanical support, fewer mechanical support cells are required in the stems and roots. Lianas have long and narrow stems with low Huber values (xylem area per distal leaf area) and long and wide vessels with great conductive efficiency. However, when scaled to the length of the stems, liana vessels are “only average” in mean diameter. Lianas have greater hydraulic diameters than in similar length free-standing stems due to greater variance in vessel diameter. Liana stems tend to be more vulnerable to dysfunction by water stress or freeze/thaw than in free-standing plants, but the stems of lianas often have many narrow vessels and/or tracheids surrounding the wide vessels, providing alternate transport pathways in the event of xylem dysfunction. The leaf-specific conductivity values of lianas are not exceptional; pressure gradients may be similar to those of free-standing plants, which could pose hydraulic limitations since liana stems are often greater than 100 m in length. Root pressures are quite common in lianas, and many lianas are deep rooted. Lianas are effective at sprouting from the base and at rooting from fallen stems that contact the soil and, in many species of lianas, variant secondary growth facilitates repair of mechanically damaged stems. Linked to the structural parasite strategy, lianas are most abundant in seasonally dry tropical forests where there is low risk of freeze/thaw events and where deep roots may be advantageous.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aloni R, Zimmermann MH (1983) The control of vessel size and density along the plant axis: a new hypothesis. Differentiation 24:203–208

    Google Scholar 

  • Aloni R (1987) Differentiation of vascular tissues. Ann Rev Plant Physiol 38:179–204

    Google Scholar 

  • Andrade JL, Meinzer FC, Goldstein G, Schnitzer SA (2005) Water uptake and transport in lianas and co-occurring trees of a seasonally dry tropical forest. Trees 19(3):282–289

    Google Scholar 

  • Anfodillo T, Carraro V, Carrer M, Fior C, Rossi S (2006) Convergent tapering of xylem conduits in different woody species. New Phytol 169:279–290

    PubMed  Google Scholar 

  • Anfodillo T, Deslauriers A, Menardi R, Tedoldi L, Petit G, Rossi S (2012) Widening of xylem conduits in a conifer tree depends on the longer time of cell expansion downwards along the stem. J Exp Bot 63:837–845

    PubMed Central  CAS  PubMed  Google Scholar 

  • Anfodillo T, Petit G, Crivellaro A (2013) Axial conduit widening in woody species: a still neglected anatomical pattern. IAWA J 34(4):352–364

    Google Scholar 

  • Angyalossy V, Angeles G, Pace MR, Lima AC, Dias-Leme CL, Lohmann LG, Madero-Vega C (2012) An overview of the anatomy, development and evolution of the vascular system of lianas. Plant Ecol Diversity 5:167–182

    Google Scholar 

  • Baas P, Ewers FW, Davis SD, Wheeler EA (2004) Evolution of xylem physiology. In: Hemsley AR, Poole I (eds) The evolution of plant physiology: from whole plants to ecosystems. Elsevier, London, pp 273–295

    Google Scholar 

  • Becker P, Gribben RJ (2001) Estimation of conduit taper for the hydraulic resistance model of West et al. Tree Physiol 21:697–700

    CAS  PubMed  Google Scholar 

  • Brenan JPN (1967) Flora of Tropical East Africa. Part 2, Caesalpinioideae. Crown Agents for Oversea Governments and Administrations, London, p 215

    Google Scholar 

  • Breshears DD, McDowell NG, Goddard KL, Dayem KE, Martens SN, Meyer CW, Brown KM (2008) Foliar absorption of intercepted rainfall improves woody plant water status most during drought. Ecology 89(1):41–47

    PubMed  Google Scholar 

  • Burgess SSO, Dawson TE (2004) The contribution of fog to the water relations of Sequoia sempervirens (D. Don): foliar uptake and prevention of dehydration. Plant Cell Environ 27(8):1023–1034

    Google Scholar 

  • Burkill IH (1966) A dictionary of the economic products of the Malay Peninsula. Ministry of Agriculture and Cooperative, Kuala Lumpur

    Google Scholar 

  • Caballe G (1994) Ramet proliferation by longitudinal splitting in the Gabonese rain forest liana Dalhousiea africana S. Moore (Papilionaceae). Biotropica 26:266–275

    Google Scholar 

  • Cai ZQ, Schnitzer SA, Bongers F (2009) Seasonal differences in leaf-level physiology give lianas a competitive advantage over trees in a tropical seasonal forest. Oecologia 161(1):25–33

    PubMed Central  PubMed  Google Scholar 

  • Campanello PI, Garibaldi JF, Gatti MG, Goldstein G (2007) Lianas in a subtropical Atlantic Forest: host preference and tree growth. Forest Ecol Manage 242(2):250–259

    Google Scholar 

  • Carlquist SJ (1975) Ecological strategies of xylem evolution. University of California, Berkeley

    Google Scholar 

  • Carlquist S (1985a) Observations on functional wood histology of vines and lianas: vessel dimorphism, tracheids, vasicentric tracheids, narrow vessels, and parenchyma. Aliso 11:139–157

    Google Scholar 

  • Carlquist S (1985b) Vasicentric tracheids as a drought survival mechanism in the woody flora of southern California and similar regions: review of vasicentric tracheids. Aliso 11:37–68

    Google Scholar 

  • Carlquist S (1991) Anatomy of vine and liana stems: a review and synthesis. In: Putz FE, Mooney HA (eds) The biology of vines. Cambridge University Press, Cambridge, pp 53–71

    Google Scholar 

  • Carlquist S (2007) Successive cambia revisited: ontogeny, histology, diversity, and functional significance. J Torrey Botanical Soc 134(2):301–332

    Google Scholar 

  • Castorena M, Rosell JA, Olson ME (unpublished data) An empirical morphospace for woody plant habit diversity. Ann Bot

    Google Scholar 

  • Chen YJ, Cao KF, Schnitzer SA, Fan ZX, Zhang JL, Bongers F (2015) Water‐use advantage for lianas over trees in tropical seasonal forests. New Phytol 205:128–136

    PubMed  Google Scholar 

  • Chiu ST, Ewers FW (1992) Xylem structure and water transport in a twiner, a scrambler, and a shrub of Lonicera (Caprifoliaceae). Trees 6(4):216–224

    Google Scholar 

  • Cochard H, Ewers FW, Tyree MT (1994) Water relations of a tropical vine-like bamboo (Rhipidocladum racemiflorum): root pressures, vulnerability to cavitation and seasonal changes in embolism. J Exp Bot 45(8):1085–1089

    Google Scholar 

  • Comstock JP, Sperry JS (2000) Theoretical considerations of optimal conduit length for water transport in vascular plants. New Phytol 148:195–218

    Google Scholar 

  • Coomes DA, Jenkins KL, Cole LES (2007) Scaling of tree vascular transport systems along gradients of nutrient supply and altitude. Biol Lett 3:87–90

    Google Scholar 

  • Cowan IR (1965) Transport of water in the soil-plant-atmosphere system. J Appl Ecol 2:221–239

    Google Scholar 

  • Crivellaro A, McCulloh K, Jones FA, Lachenbruch B (2012) Anatomy and mechanical and hydraulic needs of woody climbers contrasted with subshrubs on the island of Cyrpus. IAWA J 33:355–373

    Google Scholar 

  • Dobbins DR, Fisher JB (1986) Wound responses in girdled stems of lianas. Bot Gaz 147:278–289

    Google Scholar 

  • Enquist BJ (2003) Cope’s Rule and the evolution of long-distance transport in vascular plants: allometric scaling, biomass partitioning and optimization. Plant Cell Environ 26:151–161

    Google Scholar 

  • Ewart AJ (1904–1905) The ascent of water in trees. Proc R Soc London 74:554–556

    Google Scholar 

  • Ewers FW, Carlton MR, Fisher JB, Kolb KJ, Tyree MT (1997a) Vessel diameters in roots versus stems of tropical lianas and other growth forms. IAWA J 18:261–279

    Google Scholar 

  • Ewers FW, Cochard H, Tyree MT (1997b) A survey of root pressures in vines of a tropical lowland forest. Oecologia 110(2):191–196

    Google Scholar 

  • Ewers FW, Ewers JM, Jacobsen AL, López-Portillo J (2007) Vessel redundancy: modeling safety in numbers. IAWA J 28(4):373

    Google Scholar 

  • Ewers FW, Fisher JB (1989a) Techniques for measuring vessel lengths and diameters in stems of woody plants. Am J Bot 76:645–656

    Google Scholar 

  • Ewers FW, Fisher JB (1989b) Variation in vessel length and diameter in stems of six tropical and subtropical lianas. Am J Bot 76:1452–1459

    Google Scholar 

  • Ewers FW, Fisher JB (1991) Why vines have narrow stems: histological trends in Bauhinia (Fabaceae). Oecologia 88(2):233–237

    Google Scholar 

  • Ewers FW, Fisher JB, Chiu ST (1990) A survey of vessel dimensions in stems of tropical lianas and other growth forms. Oecologia 84(4):544–552

    Google Scholar 

  • Ewers FW, Fisher JB, Chiu ST (1989) Water transport in the liana Bauhinia fassoglensis (Fabaceae). Plant Physiol 91(4):1625–1631

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ewers FW, Fisher JB, Fichtner K (1991) Water flux and xylem structure in vines. In: Putz FE, Mooney HA (eds) The biology of vines. Cambridge University Press, Cambridge, pp 127–160

    Google Scholar 

  • Feild TS, Balun L (2008) Xylem hydraulic and photosynthetic function of Gnetum (Gnetales) species from Papua New Guinea. New Phytol 177(3):665–675

    CAS  PubMed  Google Scholar 

  • Feild TS, Chatelet DS, Balun L, Schilling EE, Evans R (2012) The evolution of angiosperm lianescence without vessels—climbing mode and wood structure—function in Tasmannia cordata (Winteraceae). New Phytol 193(1):229–240

    PubMed  Google Scholar 

  • Fisher JB, Guillermo Angeles A, Ewers FW, López-Portillo J (1997) Survey of root pressure in tropical vines and woody species. Int J Plant Sci 158:44–50

    Google Scholar 

  • Fisher JB, Ewers FW (1989) Wound healing in stems of lianas after twisting and girdling injuries. Bot Gaz 150:251–265

    Google Scholar 

  • Fisher JB, Ewers FW (1991) Structural responses to stem injury in vines. In: Putz FE, Mooney HA (eds) The biology of vines. Cambridge University Press, Cambridge, pp 99–124

    Google Scholar 

  • Fisher JB, Ewers FW (1995) Vessel dimensions in liana and tree species of Gnetum (Gnetales). Am J Bot 82:1350–1357

    Google Scholar 

  • Fisher JB, Ewers FW (1992) Xylem pathways in liana stems with variant secondary growth. Botanical J Linnean Soc 108(2):181–202

    Google Scholar 

  • Fisher JB, Tan HT, Toh LP (2002) Xylem of rattans: vessel dimensions in climbing palms. Am J Bot 89(2):196–202

    PubMed  Google Scholar 

  • Gartner BL (1991a) Structural stability and architecture of vines vs. shrubs of poison oak, Toxicodendron diversilobum. Ecology 72:2005–2015

    Google Scholar 

  • Gartner BL (1991b) Stem hydraulic properties of vines vs. shrubs of western poison oak, Toxicodendron diversilobum. Oecologia 87(2):180–189

    Google Scholar 

  • Gartner BL (1991c) Relative growth rates of vines and shrubs of western poison oak, Toxicodendron diversilobum (Anacardiaceae). Am J Bot 78:1345–1353

    Google Scholar 

  • Gartner BL, Bullock SH, Mooney HA, Brown VB, Whitbeck JL (1990) Water transport properties of vine and tree stems in a tropical deciduous forest. Am J Bot 77:742–749

    Google Scholar 

  • Gasson P, Dobbins DR (1991) Wood anatomy of the Bignoniaceae, with a comparison of trees and lianas. IAWA Bull (NS) 12:389–417

    Google Scholar 

  • Gleason SM, Butler DW, Zieminska K, Waryszak P, Westoby M (2012) Stem xylem conductivity is key to plant water balance across Australian angiosperm species. Funct Ecol 26:343–352

    Google Scholar 

  • Grew N (1682) The anatomy of plants. W. Rawlins, London

    Google Scholar 

  • Grime JP (1977) Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am Nat 111:1169–1194

    Google Scholar 

  • Haberlandt G (1914) Physiological plant anatomy. Macmillan, London

    Google Scholar 

  • Hacke UG, Sperry JS, Pockman WT, Davis SD, McCulloh KA (2001) Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia 126:457–461

    Google Scholar 

  • Hales S (1727) Vegetable staticks; or, an account of some statical experiments on the sap in vegetables. W. and J. Innys, London

    Google Scholar 

  • Hearn DJ (2006) Adenia (Passifloraceae) and its adaptive radiation: phylogeny and growth form diversification. Syst Bot 31:805–821

    Google Scholar 

  • Hearn DJ (2009) Developmental patterns in anatomy are shared among separate evolutionary origins of stem succulent and storage root-bearing growth habits in Adenia (Passifloraceae). Am J Bot 96(11):1941–1956

    PubMed  Google Scholar 

  • Isnard S, Silk W (2009) Moving with climbing plants from Charles Darwin’s time into the 21st century. Am J Bot 96:1205–1221

    PubMed  Google Scholar 

  • Jacobsen AL, Ewers FW, Pratt RB, Paddock WA, Davis SD (2005) Do xylem fibers affect vessel cavitation resistance? Plant Physiol 139(1):546–556

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jacobsen AL, Pratt RB, Tobin MF, Hacke UG, Ewers FW (2012) A global analysis of xylem vessel length in woody plants. Am J Bot 99(10):1583–1591

    PubMed  Google Scholar 

  • Jiménez-Castillo M, Lusk CH (2013) Vascular performance of woody plants in a temperate rain forest: lianas suffer higher levels of freeze–thaw embolism than associated trees. Funct Ecol 27(2):403–412

    Google Scholar 

  • Johnson DM, Domec JC, Woodruff DR, McCulloh KA, Meinzer FC (2013) Contrasting hydraulic strategies in two tropical lianas and their host trees. Am J Bot 100(2):374–383

    PubMed  Google Scholar 

  • Jost L (1907) Lectures on plant physiology. Clarendon, Oxford

    Google Scholar 

  • Kern KA, Ewers FW, Telewski FW, Koehler L (2005) Mechanical perturbation affects conductivity, mechanical properties and aboveground biomass of hybrid poplars. Tree Physiol 25(10):1243–1251

    PubMed  Google Scholar 

  • Kolb K, Sperry JS (1999) Differences in drought adaptation between subspecies of sagebrush (Artemisia tridentata). Ecology 80:2373–2384

    Google Scholar 

  • Lahaye R, Civeyrel L, Speck T, Rowe NP (2005) Evolution of shrub-like growth forms in the lianoid subfamily Secamonoideae (Apocynaceae s.l.) of Madagascar: phylogeny, biomechanics, and development. Am J Bot 92:1381–1396

    CAS  PubMed  Google Scholar 

  • Letcher SG, Chazdon RL (2009) Lianas and self-supporting plants during tropical forest succession. Forest Ecol Manage 257(10):2150–2156

    Google Scholar 

  • Limm EB, Simonin KA, Bothman AG, Dawson TE (2009) Foliar water uptake: a common water acquisition strategy for plants of the redwood forest. Oecologia 161(3):449–459

    PubMed Central  PubMed  Google Scholar 

  • Lovisolo C, Hartung W, Schubert A (2002) Whole-plant hydraulic conductance and root-to-shoot flow of abscisic acid are independently affected by water stress in grapevines. Funct Plant Biol 29:1349–1356

    CAS  Google Scholar 

  • McCulloh KA, Sperry JS, Adler FR (2003) Water transport in plants obeys Murray’s law. Nature 421:939–942

    CAS  PubMed  Google Scholar 

  • Mencuccini M (2002) Hydraulic constraints in the functional scaling of trees. Tree Physiol 22(8):553–565

    PubMed  Google Scholar 

  • Mencuccini M, Hölttä T, Petit G, Magnani F (2007) Sanio’s laws revisited. Size-dependent changes in the xylem architecture of trees. Ecol Lett 10:1084–1093

    PubMed  Google Scholar 

  • Mooney HA, Gartner BL (1991) Reserve economy of vines. In: Putz FE, Mooney HA (eds) The biology of vines. Cambridge University Press, Cambridge, pp 161–179

    Google Scholar 

  • Neel PL, Harris RW (1971) Motion-induced inhibition of elongation and induction of dormancy in Liquidambar. Science 173(3991):58–59

    CAS  PubMed  Google Scholar 

  • Niklas KJ, Molina-Freaner F, Tinoco-Ojanguren C, Paolillo DJ (2002) The biomechanics of Pachycereus pringlei root systems. Am J Bot 89(1):12–21

    PubMed  Google Scholar 

  • Olson ME (2003) Stem and leaf anatomy of the arborescent Cucurbitaceae Dendrosicyos socotrana, with comments on the evolution of pachycauls from lianas. Plant Syst Evol 239(3 and 4):199–214

    Google Scholar 

  • Olson ME (2012) The developmental renaissance in adaptationism. Trends Ecol Evol 27:278–287

    PubMed  Google Scholar 

  • Olson ME, Rosell JA (2013) Vessel diameter–stem diameter scaling across woody angiosperms and the ecological causes of xylem vessel diameter variation. New Phytol 197:1204–1213

    PubMed  Google Scholar 

  • Olson ME, Anfodillo T, Rosell JA, Petit G, Crivellaro A, Isnard S, León-Gómez C, Alvarado-Cárdenas LO, Castorena M (2014) Universal hydraulics of the flowering plants: vessel diameter scales with stem length across angiosperm lineages, habits and climates. Ecol Lett 17:988–997

    PubMed  Google Scholar 

  • Petit G, Anfodillo T (2009) Plant physiology in theory and practice: an analysis of the WBE model for vascular plants. J Theoret Biol 259:1–4

    Google Scholar 

  • Petit G, Anfodillo T (2011) Comment on “The blind men and the elephant: the impact of context and scale in evaluating conflicts between plant hydraulic safety and efficiency” by Meinzer et al. (2010). Oecologia 165:271–274

    PubMed  Google Scholar 

  • Pittermann J, Sperry JS, Wheeler JK, Hacke UG, Sikkema EH (2006) Mechanical reinforcement of tracheids compromises the hydraulic efficiency of conifer xylem. Plant Cell Environ 29:1618–1628

    PubMed  Google Scholar 

  • Pruyn ML, Ewers BJ, Telewski FW (2000) Thigmomorphogenesis: changes in the morphology and mechanical properties of two Populus hybrids in response to mechanical perturbation. Tree Physiol 20(8):535–540

    PubMed  Google Scholar 

  • Putz FE (1983) Liana biomass and leaf area of a“ tierra firme” forest in the Rio Negro Basin, Venezuela. Biotropica 15:185–189

    Google Scholar 

  • Putz FE (1984) The natural history of lianas on Barro Colorado Island, Panama. Ecology 65(6):1713–1724

    Google Scholar 

  • Reddy MS, Parthasarathy N (2006) Liana diversity and distribution on host trees in four inland tropical dry evergreen forests of peninsular India. Tropical Ecol 47(1):109–124

    Google Scholar 

  • Rosell JA, Olson ME, Aguirre R, Carlquist S (2007) Logistic regression in comparative wood anatomy: tracheid types, wood anatomical terminology, and new inferences from the Carquist & Hoekman southern California dataset. Botanical J Linnean Soc 154(3):331–351

    Google Scholar 

  • Rosell JA, Olson ME, Aguirre-Hernández R, Sánchez-Sesma FJ (2012) Ontogenetic modulation of branch size, shape, and biomechanics produces diversity across habitats in the Bursera simaruba clade of tropical trees. Evol Develop 14:437–449

    Google Scholar 

  • Rosell JA, Olson ME (2014) Do lianas really have wide vessels? Vessel diameter-stem length scaling in non self-supporting plants. Perspect Plant Ecol Evol Syst 16:288–295

    Google Scholar 

  • Rundel PW (1982) Water uptake by organs other than roots. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Physiological plant ecology II. Springer, Berlin, pp 111–134

    Google Scholar 

  • Sanio K (1872) Ueber die Grösse der Holzzellen bei der gemeinen der Kiefer (Pinus silvestris). Jahrbuecher fuer wissenscafliche Botanik 8:401–420

    Google Scholar 

  • Santiago LS (2010) Can growth form classification predict litter nutrient dynamics and decomposition rates in lowland wet forest? Biotropica 42(1):72–79

    Google Scholar 

  • Santiago LS, Wright SJ (2007) Leaf functional traits of tropical forest plants in relation to growth form. Funct Ecol 21(1):19–27

    Google Scholar 

  • Savage VM, Bentley LP, Enquist BJ, Sperry JS, Smith DD, Reich PB, von Allmen EI (2010) Hydraulic trade-offs and space filling enable better predictions of vascular structure and function in plants. Proc Natl Acad Sci U S A 107:22722–22727

    PubMed Central  CAS  PubMed  Google Scholar 

  • Scarpella E, Meijer AH (2004) Pattern formation in the vascular system of monocot and dicot plant species. New Phytol 164:209–242

    Google Scholar 

  • Schenck H (1893) Beiträge zur biologie und anatomie der lianen, in beson- deren der in Brasilien einheimishe arten. 2. Beiträge zur anatomie der lianen. In: Schimpers AFW (ed) Botanische Mittheilungen aus der Tropen, vol 5. Fischer, Jena, pp 1–271

    Google Scholar 

  • Schnitzer SA (2005) A mechanistic explanation for global patterns of liana abundance and distribution. Am Nat 166(2):262–276

    PubMed  Google Scholar 

  • Schnitzer SA, Bongers F (2002) The ecology of lianas and their role in forests. Trends Ecol Evol 17(5):223–230

    Google Scholar 

  • Schnitzer SA, Bongers F (2011) Increasing liana abundance and biomass in tropical forests: emerging patterns and putative mechanisms. Ecol Lett 14:397–406

    PubMed  Google Scholar 

  • Schnitzer SA, van der Heijden GMF, Mascaro J, Carson WP (2014) Lianas in gaps reduce carbon accumulation in a tropical forest. Ecology 95:3008–3017

    Google Scholar 

  • Schnitzer SA, Kuzee ME, Bongers F (2005) Disentangling above‐and below‐ground competition between lianas and trees in a tropical forest. J Ecol 93(6):1115–1125

    Google Scholar 

  • Sperry JS, Holbrook NM, Zimmermann MH, Tyree MT (1987) Spring filling of xylem vessels in wild grapevine. Plant Physiol 83(2):414–417

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sperry JS, Smith DD, Savage VM, Enquist BJ, McCulloh KA, Reich PB, Bentley LP, von Allmen EI (2012) A species-level model for metabolic scaling in trees I. Exploring boundaries to scaling space within and across species. Funct Ecol 26:1054–1065

    Google Scholar 

  • Stevens GC (1987) Lianas as structural parasites: the Bursera simaruba example. Ecology 68:77–81

    Google Scholar 

  • Stevens PF (2001 onwards). Angiosperm phylogeny website. Version 12. http://www.mobot.org/MOBOT/research/APweb/

  • Tang Y, Kitching RL, Cao M (2012) Lianas as structural parasites: a re-evaluation. Chin Sci Bull 57(4):307–312

    Google Scholar 

  • Tibbetts TJ, Ewers FW (2000) Root pressure and specific conductivity in temperate lianas: exotic Celastrus orbiculatus (Celastraceae) vs. native Vitis riparia (Vitaceae). Am J Bot 87(9):1272–1278

    CAS  PubMed  Google Scholar 

  • Tyree MT, Ewers FW (1996) Hydraulic architecture of woody tropical plants. In: Mulkey SS, Chazdon RL, Smith AP (eds) Tropical forest plant ecophysiology. Chapman & Hall, New York, pp 217–243

    Google Scholar 

  • Tyree MT, Zimmermann M (2002) Xylem structure and the ascent of sap, 2nd edn. Springer, Berlin

    Google Scholar 

  • Uggla C, Mellerowicz EJ, Sundberg B (1998) Indole-3-acetic acid controls cambial growth in Scots pine by positional signaling. Plant Physiol 117:113–121

    Google Scholar 

  • van der Sande MT, Poorter L, Schnitzer SA, Markestein L (2013) Are lianas more drought-tolerant than trees? A test for the role of hydraulic architecture and other stem and leaf traits. Oecologia 172(4):961–972

    PubMed  Google Scholar 

  • von Allmen EI, Sperry JS, Smith DD, Savage VM, Enquist BJ, Reich PB, Bentley LP (2012) A species level model for metabolic scaling of trees II. Testing in a ring- and diffuse-porous species. Funct Ecol 26:1066–1076

    Google Scholar 

  • West G, Brown JH, Enquist BJ (1999) A general model for the structure and allometry of plant vascular systems. Nature 400:664–667

    CAS  Google Scholar 

  • Westermaier M, Ambronn H (1881) Beziehungen zwischen Lebensweise und Struktur der Schling- und Kletterpflanzen. Flora 69:417–436

    Google Scholar 

  • White PR (1938) “Root-pressure”—an unappreciated force in sap movement. Am J Bot 25:223–227

    CAS  Google Scholar 

  • Wyka TP, Oleksyn J, Karolewski P, Schnitzer SA (2013) Phenotypic correlates of the lianescent growth form: a review. Ann Bot 112:1667–1681

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zanne AE, Westoby M, Falster DS, Ackerly DD, Loarie SR, Arnold SEJ, Coomes DA (2010) Angiosperm wood structure: global patterns in vessel anatomy and their relations to wood density and potential conductivity. Am J Bot 97:207–215

    PubMed  Google Scholar 

  • Zimmermann MH, Jeje AA (1981) Vessel-length distribution in stems of some American woody plants. Can J Bot 59:1882–1892

    Google Scholar 

  • Zimmennann MH, Potter D (1982) Vessel-length distribution in branches, stem and roots of Acer rubrum L. IAWA Bull 3:103–109

    Google Scholar 

  • Zimmermann MH (1983) Xylem structure and the ascent of Sap. Springer, Berlin

    Google Scholar 

  • Zhu SD, Cao KF (2009) Hydraulic properties and photosynthetic rates in co-occurring lianas and trees in a seasonal tropical rainforest in southwestern China. Plant Ecol 204(2):295–304

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank W. Ewers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ewers, F.W., Rosell, J.A., Olson, M.E. (2015). Lianas as Structural Parasites. In: Hacke, U. (eds) Functional and Ecological Xylem Anatomy. Springer, Cham. https://doi.org/10.1007/978-3-319-15783-2_6

Download citation

Publish with us

Policies and ethics