Advertisement

The Role of p110δ in the Development and Activation of B Lymphocytes

  • Rebecca NewmanEmail author
  • Martin Turner
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 850)

Abstract

The phosphatidylinositol-3-kinase (PI3K) pathway has an essential role in signal transduction, where it is required for a number of different cellular processes including proliferation, differentiation, development, migration and growth. In the immune system, PI3K regulates inflammation by controlling the activation and recruitment of leukocytes. The generation of conditional knockout mice has allowed the study of PI3K isoforms specifically in B and T lymphocytes, and demonstrates the importance of intact signalling in their development and function. PI3K signalling must be tightly regulated in lymphocytes as excessive PI3K can lead to autoimmunity, immunodeficiency or cancer, whilst diminished signalling can result in developmental defects and immunodeficiency. Recent advances in the understanding of PI3K signalling have hastened the application of isoform-specific PI3K inhibitors, which are currently undergoing clinical trials. This review will focus on the p110δ catalytic subunit of the class 1A family of PI3K, and its role in the development and activation of B lymphocytes through various downstream effectors.

Keywords

PI3K p110δ B cells AKT 

Notes

Acknowledgements

Work in the authors’ laboratory is funded by the Biotechnology and Biological Sciences Research Council. R. N is supported by a CASE studentship in partnership with GSK.

References

  1. Aiba, Y., Kameyama, M., Yamazaki, T., Tedder, T. F., & Kurosaki, T. (2008). Regulation of B-cell development by BCAP and CD19 through their binding to phosphoinositide 3-kinase. Blood, 111(3), 1497–1503. doi:10.1182/blood-2007-08-109769.PubMedCrossRefGoogle Scholar
  2. Alkhatib, A., Werner, M., Hug, E., Herzog, S., Eschbach, C., Faraidun, H., et al. (2012). FoxO1 induces Ikaros splicing to promote immunoglobulin gene recombination. The Journal of Experimental Medicine, 209(2), 395–406. doi:10.1084/jem.20110216.PubMedCentralPubMedCrossRefGoogle Scholar
  3. Amin, R. H., & Schlissel, M. S. (2008). Foxo1 directly regulates the transcription of recombination-activating genes during B cell development. Nature Immunology, 9(6), 613–622. doi:10.1038/ni.1612.PubMedCentralPubMedCrossRefGoogle Scholar
  4. Amzel, L. M., Huang, C. H., Mandelker, D., Lengauer, C., Gabelli, S. B., & Vogelstein, B. (2008). Structural comparisons of class I phosphoinositide 3-kinases. Nature Reviews Cancer, 8(9), 665–669. doi:10.1038/nrc2443.PubMedCentralPubMedCrossRefGoogle Scholar
  5. Angulo, I., Vadas, O., Garcon, F., Banham-Hall, E., Plagnol, V., Leahy, T. R., et al. (2013). Phosphoinositide 3-kinase delta gene mutation predisposes to respiratory infection and airway damage. Science, 342(6160), 866–871. doi:10.1126/science.1243292.PubMedCentralPubMedCrossRefGoogle Scholar
  6. Anzelon, A. N., Wu, H., & Rickert, R. C. (2003). Pten inactivation alters peripheral B lymphocyte fate and reconstitutes CD19 function. Nature Immunology, 4(3), 287–294. doi:10.1038/ni892.PubMedCrossRefGoogle Scholar
  7. Baba, Y., Hashimoto, S., Matsushita, M., Watanabe, D., Kishimoto, T., Kurosaki, T., et al. (2001). BLNK mediates Syk-dependent Btk activation. Proceedings of the National Academy of Sciences of the United States of America, 98(5), 2582–2586. doi:10.1073/pnas.051626198.PubMedCentralPubMedCrossRefGoogle Scholar
  8. Bai, A., Hu, H., Yeung, M., & Chen, J. (2007). Kruppel-like factor 2 controls T cell trafficking by activating L-selectin (CD62L) and sphingosine-1-phosphate receptor 1 transcription. Journal of Immunology, 178(12), 7632–7639.CrossRefGoogle Scholar
  9. Bajpai, U. D., Zhang, K., Teutsch, M., Sen, R., & Wortis, H. H. (2000). Bruton’s tyrosine kinase links the B cell receptor to nuclear factor kappaB activation. The Journal of Experimental Medicine, 191(10), 1735–1744.PubMedCentralPubMedCrossRefGoogle Scholar
  10. Batten, M., Groom, J., Cachero, T. G., Qian, F., Schneider, P., Tschopp, J., et al. (2000). BAFF mediates survival of peripheral immature B lymphocytes. The Journal of Experimental Medicine, 192(10), 1453–1466.PubMedCentralPubMedCrossRefGoogle Scholar
  11. Bendall, H. H., Sikes, M. L., Ballard, D. W., & Oltz, E. M. (1999). An intact NF-kappa B signaling pathway is required for maintenance of mature B cell subsets. Molecular Immunology, 36(3), 187–195.PubMedCrossRefGoogle Scholar
  12. Benjamin, D., Schmidlin, M., Min, L., Gross, B., & Moroni, C. (2006). BRF1 protein turnover and mRNA decay activity are regulated by protein kinase B at the same phosphorylation sites. Molecular and Cellular Biology, 26(24), 9497–9507. doi:10.1128/MCB.01099-06.PubMedCentralPubMedCrossRefGoogle Scholar
  13. Bilancio, A., Okkenhaug, K., Camps, M., Emery, J. L., Ruckle, T., Rommel, C., et al. (2006). Key role of the p110delta isoform of PI3K in B-cell antigen and IL-4 receptor signaling: Comparative analysis of genetic and pharmacologic interference with p110delta function in B cells. Blood, 107(2), 642–650. doi:10.1182/blood-2005-07-3041.PubMedCrossRefGoogle Scholar
  14. Brennan, P., Babbage, J. W., Burgering, B. M., Groner, B., Reif, K., & Cantrell, D. A. (1997). Phosphatidylinositol 3-kinase couples the interleukin-2 receptor to the cell cycle regulator E2F. Immunity, 7(5), 679–689.PubMedCrossRefGoogle Scholar
  15. Brunet, A., Datta, S. R., & Greenberg, M. E. (2001). Transcription-dependent and -independent control of neuronal survival by the PI3K-Akt signaling pathway. Current opinion in Neurobiology, 11(3), 297–305.PubMedCrossRefGoogle Scholar
  16. Calnan, D. R., & Brunet, A. (2008). The FoxO code. Oncogene, 27(16), 2276–2288. doi:10.1038/onc.2008.21.PubMedCrossRefGoogle Scholar
  17. Cantley, L. C. (2002) The phosphoinositide 3-kinase pathway. Science, 296(5573), 1655–1657. doi:10.1126/science.296.5573.1655.PubMedCrossRefGoogle Scholar
  18. Chang, F., Lee, J. T., Navolanic, P. M., Steelman, L. S., Shelton, J. G., Blalock, W. L., et al. (2003). Involvement of PI3K/Akt pathway in cell cycle progression, apoptosis, and neoplastic transformation: A target for cancer chemotherapy. Leukemia, 17(3), 590–603. doi:10.1038/sj.leu.2402824.PubMedCrossRefGoogle Scholar
  19. Chen, J., Limon, J. J., Blanc, C., Peng, S. L., & Fruman, D. A. (2010). Foxo1 regulates marginal zone B-cell development. European Journal of Immunology, 40(7), 1890–1896. doi:10.1002/eji.200939817.PubMedCentralPubMedCrossRefGoogle Scholar
  20. Choudhury, G. G., Karamitsos, C., Hernandez, J., Gentilini, A., Bardgette, J., & Abboud, H. E. (1997) PI-3-kinase and MAPK regulate mesangial cell proliferation and migration in response to PDGF. The American Journal Of Physiology, 273(6 Pt 2), F931–938.Google Scholar
  21. Cinamon, G., Matloubian, M., Lesneski, M. J., Xu, Y., Low, C., Lu, T., et al. (2004). Sphingosine 1-phosphate receptor 1 promotes B cell localization in the splenic marginal zone. Nature Immunology, 5(7), 713–720. doi:10.1038/ni1083.PubMedCrossRefGoogle Scholar
  22. Cinamon, G., Zachariah, M. A., Lam, O. M., Foss, F. W. Jr., & Cyster, J. G. (2008). Follicular shuttling of marginal zone B cells facilitates antigen transport. Nature Immunology, 9(1), 54–62. doi:10.1038/ni1542.PubMedCentralPubMedCrossRefGoogle Scholar
  23. Clayton, E., Bardi, G., Bell, S. E., Chantry, D., Downes, C. P., Gray, A., et al. (2002). A Crucial Role for the p110 Subunit of Phosphatidylinositol 3-Kinase in B Cell Development and Activation. The Journal of Experimental Medicine, 196(6), 753–763. doi:10.1084/jem.20020805.PubMedCentralPubMedCrossRefGoogle Scholar
  24. Cross, D. A. E., Alessi, D. R., Cohen, P., Andjelkovich, M., & Hemmings, B. A. (1995). Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature, 378(6559), 785–789.PubMedCrossRefGoogle Scholar
  25. Datta, S. R., Dudek, H., Tao, X., Masters, S., Fu, H., Gotoh, Y., et al. (1997). Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell, 91(2), 231–241.PubMedCrossRefGoogle Scholar
  26. de Gorter D. J., Beuling, E. A., Kersseboom, R., Middendorp, S., van Gils J. M., Hendriks, R. W., et al. (2007). Bruton’s tyrosine kinase and phospholipase Cgamma2 mediate chemokine-controlled B cell migration and homing. Immunity, 26(1), 93–104. doi:10.1016/j.immuni.2006.11.012.PubMedCrossRefGoogle Scholar
  27. Delgado, P., Cubelos, B., Calleja, E., Martinez-Martin, N., Cipres, A., Merida, I., et al. (2009). Essential function for the GTPase TC21 in homeostatic antigen receptor signaling. Nature Immunology, 10(8), 880–888. doi:10.1038/ni.1749.PubMedCrossRefGoogle Scholar
  28. Dengler, H. S., Baracho, G. V., Omori, S. A., Bruckner, S., Arden, K. C., Castrillon, D. H., et al. (2008). Distinct functions for the transcription factor Foxo1 at various stages of B cell differentiation. Nature Immunology, 9(12), 1388–1398. doi:10.1038/ni.1667.PubMedCentralPubMedCrossRefGoogle Scholar
  29. Dijkers, P. F., Birkenkamp, K. U., Lam, E. W., Thomas, N. S., Lammers, J. W., Koenderman, L., et al. (2002). FKHR-L1 can act as a critical effector of cell death induced by cytokine withdrawal: Protein kinase B-enhanced cell survival through maintenance of mitochondrial integrity. The Journal of Cell Biology, 156(3), 531–542. doi:10.1083/jcb.200108084.PubMedCentralPubMedCrossRefGoogle Scholar
  30. Dil, N., & Marshall, A. J. (2009). Role of phosphoinositide 3-kinase p110 delta in TLR4- and TLR9-mediated B cell cytokine production and differentiation. Molecular Immunology, 46(10), 1970–1978. doi:10.1016/j.molimm.2009.03.010.PubMedCrossRefGoogle Scholar
  31. Doody, G. M., Bell, S. E., Vigorito, E., Clayton, E., McAdam, S., Tooze, R., et al. (2001). Signal transduction through Vav-2 participates in humoral immune responses and B cell maturation. Nature Immunology, 2(6), 542–547. doi:10.1038/88748.PubMedCrossRefGoogle Scholar
  32. Downward, J. (1997). Role of phosphoinositide-3-OH kinase in Ras signaling. Advances in Second Messenger and Phosphoprotein Research, 31, 1–10.PubMedCrossRefGoogle Scholar
  33. Durand, C. A., Hartvigsen, K., Fogelstrand, L., Kim, S., Iritani, S., Vanhaesebroeck, B., et al. (2009). Phosphoinositide 3-kinase p110 delta regulates natural antibody production, marginal zone and B-1 B cell function, and autoantibody responses. Journal of Immunology, 183(9), 5673–5684. doi:10.4049/jimmunol.0900432.CrossRefGoogle Scholar
  34. Ehrhardt, A., Ehrhardt, G. R., Guo, X., & Schrader, J. W. (2002). Ras and relatives–job sharing and networking keep an old family together. Experimental Hematology, 30(10), 1089–1106.PubMedCrossRefGoogle Scholar
  35. Eickholt, B. J., Ahmed, A. I., Davies, M., Papakonstanti, E. A., Pearce, W., Starkey, M. L., et al. (2007). Control of axonal growth and regeneration of sensory neurons by the p110delta PI 3-kinase. PloS ONE, 2(9), e869. doi:10.1371/journal.pone.0000869.PubMedCentralPubMedCrossRefGoogle Scholar
  36. Espinosa, L., Ingles-Esteve, J., Aguilera, C., & Bigas, A. (2003). Phosphorylation by glycogen synthase kinase-3 beta down-regulates Notch activity, a link for Notch and Wnt pathways. The Journal of Biological Chemistry, 278(34), 32227–32235. doi:10.1074/jbc.M304001200.PubMedCrossRefGoogle Scholar
  37. Fruman, D. A. (1999) Impaired B cell development and proliferation in absence of phosphoinositide 3-kinase p85. Science, 283(5400), 393–397. doi:10.1126/science.283.5400.393.PubMedCrossRefGoogle Scholar
  38. Fruman, D. A., & Bismuth, G. (2009) Fine tuning the immune response with PI3K. Immunological Reviews, 228(1), 253–272. doi:10.1111/j.1600-065X.2008.00750.x.PubMedCrossRefGoogle Scholar
  39. Fujikawa, K., Miletic, A. V., Alt, F. W., Faccio, R., Brown, T., Hoog, J., et al. (2003). Vav1/2/3-null mice define an essential role for Vav family proteins in lymphocyte development and activation but a differential requirement in MAPK signaling in T and B cells. The Journal of Experimental Medicine, 198(10), 1595–1608. doi:10.1084/jem.20030874.PubMedCentralPubMedCrossRefGoogle Scholar
  40. Gartel, A. L., & Shchors, K. (2003). Mechanisms of c-myc-mediated transcriptional repression of growth arrest genes. Experimental Cell Research, 283(1), 17–21. Doi 10.1016/S0014-4827(02)00020-4.PubMedCrossRefGoogle Scholar
  41. Gibb, D. R., Shikh M, E., Kang, D. J., Rowe, W. J., Sayed R, E., Cichy, J., et al. (2010). ADAM10 is essential for Notch2-dependent marginal zone B cell development and CD23 cleavage in vivo. The Journal of Experimental Medicine, 207(3), 623–635. doi:10.1084/jem.20091990.PubMedCentralPubMedCrossRefGoogle Scholar
  42. Glassford, J., Soeiro, I., Skarell, S. M., Banerji, L., Holman, M., Klaus, G. G., et al. (2003). BCR targets cyclin D2 via Btk and the p85alpha subunit of PI3-K to induce cell cycle progression in primary mouse B cells. Oncogene, 22(15), 2248–2259. doi:10.1038/sj.onc.1206425.PubMedCrossRefGoogle Scholar
  43. Glassford, J., Vigorito, E., Soeiro, I., Madureira, P. A., Zoumpoulidou, G., Brosens, J. J., et al. (2005). Phosphatidylinositol 3-kinase is required for the transcriptional activation of cyclin D2 in BCR activated primary mouse B lymphocytes. European Journal of Immunology, 35(9), 2748–2761. doi:10.1002/eji.200425812.PubMedCrossRefGoogle Scholar
  44. Han, J., Luby-Phelps, K., Das, B., Shu, X., Xia, Y., Mosteller, R. D., et al. (1998). Role of substrates and products of PI 3-kinase in regulating activation of Rac-related guanosine triphosphatases by Vav. Science, 279(5350), 558–560.PubMedCrossRefGoogle Scholar
  45. Hatakeyama, M., Brill, J. A., Fink, G. R., & Weinberg, R. A. (1994). Collaboration of G1 cyclins in the functional inactivation of the retinoblastoma protein. Genes and Development, 8(15), 1759–1771.PubMedCrossRefGoogle Scholar
  46. Henley, T., Kovesdi, D., & Turner, M. (2008). B-cell responses to B-cell activation factor of the TNF family (BAFF) are impaired in the absence of PI3K delta. European Journal of Immunology, 38(12), 3543–3548. doi:10.1002/eji.200838618.PubMedCrossRefGoogle Scholar
  47. Herman, S. E., Gordon, A. L., Wagner, A. J., Heerema, N. A., Zhao, W., Flynn, J. M., et al. (2010). Phosphatidylinositol 3-kinase-delta inhibitor CAL-101 shows promising preclinical activity in chronic lymphocytic leukemia by antagonizing intrinsic and extrinsic cellular survival signals. Blood, 116(12), 2078–2088. doi:10.1182/blood-2010-02-271171.PubMedCentralPubMedCrossRefGoogle Scholar
  48. Ho, L. K., Liu, D., Rozycka, M., Brown, R. A., & Fry, M. J. (1997). Identification of four novel human phosphoinositide 3-kinases defines a multi-isoform subfamily. Biochemical and Biophysical Research Communications, 235(1), 130–137. doi:10.1006/bbrc.1997.6747.PubMedCrossRefGoogle Scholar
  49. Hodson, D. J., Janas, M. L., Galloway, A., Bell, S. E., Andrews, S., Li, C. M., et al. (2010). Deletion of the RNA-binding proteins ZFP36L1 and ZFP36L2 leads to perturbed thymic development and T lymphoblastic leukemia. Nature Immunology, 11(8), 717–724. doi:10.1038/ni.1901.PubMedCentralPubMedCrossRefGoogle Scholar
  50. Hu, H., Wang, B., Borde, M., Nardone, J., Maika, S., Allred, L., et al. (2006). Foxp1 is an essential transcriptional regulator of B cell development. Nature Immunology, 7(8), 819–826. doi:10.1038/ni1358.PubMedCrossRefGoogle Scholar
  51. Inaoki, M., Sato, S., Weintraub, B. C., Goodnow, C. C., & Tedder, T. F. (1997). CD19-regulated signaling thresholds control peripheral tolerance and autoantibody production in B lymphocytes. The Journal of Experimental Medicine, 186(11), 1923–1931.PubMedCentralPubMedCrossRefGoogle Scholar
  52. Iritani, B. M., Forbush, K. A., Farrar, M. A., & Perlmutter, R. M. (1997). Control of B cell development by Ras-mediated activation of Raf. The EMBO Journal, 16(23), 7019–7031. doi:10.1093/emboj/16.23.7019.PubMedCentralPubMedCrossRefGoogle Scholar
  53. Janas, M. L., Hodson, D., Stamataki, Z., Hill, S., Welch, K., Gambardella, L., et al. (2008). The effect of deleting p110delta on the phenotype and function of PTEN-deficient B cells. Journal of Immunology, 180(2), 739–746.CrossRefGoogle Scholar
  54. Jellusova, J., Miletic, A. V., Cato, M. H., Lin, W. W., Hu, Y., Bishop, G. A., et al. (2013). Context-specific BAFF-R signaling by the NF-kappaB and PI3K pathways. Cell Reports, 5(4), 1022–1035. doi:10.1016/j.celrep.2013.10.022.PubMedCrossRefGoogle Scholar
  55. Jou, S. T., Carpino, N., Takahashi, Y., Piekorz, R., Chao, J. R., Wang, D., et al. (2002). Essential, nonredundant role for the phosphoinositide 3-kinase p110delta in signaling by the B-cell receptor complex. Molecular and Cellular Biology, 22(24), 8580–8591.PubMedCentralPubMedCrossRefGoogle Scholar
  56. Kovesdi, D., Bell, S. E., & Turner, M. (2010). The development of mature B lymphocytes requires the combined function of CD19 and the p110delta subunit of PI3K. Self Nonself, 1(2):144–153. doi:10.4161/self.1.2.11796.PubMedCentralPubMedCrossRefGoogle Scholar
  57. Krahn, A. K., Ma, K. W., Hou, S., Duronio, V., & Marshall, A. J. (2004). Two distinct waves of membrane-proximal B cell antigen receptor signaling differentially regulated by Src homology 2-containing inositol polyphosphate 5-phosphatase. Journal of Immunology, 172(1), 331–339.CrossRefGoogle Scholar
  58. Kurosaki, T. (1997). Molecular mechanisms in B cell antigen receptor signaling. Current Opinion Immunology, 9, 309–318.CrossRefGoogle Scholar
  59. Lam, K. P., Kuhn, R., & Rajewsky, K. (1997). In vivo ablation of surface immunoglobulin on mature B cells by inducible gene targeting results in rapid cell death. Cell, 90(6), 1073–1083.PubMedCrossRefGoogle Scholar
  60. Lannutti, B. J., Meadows, S. A., Herman, S. E., Kashishian, A., Steiner, B., Johnson, A. J., et al. (2011). CAL-101, a p110delta selective phosphatidylinositol-3-kinase inhibitor for the treatment of B-cell malignancies, inhibits PI3K signaling and cellular viability. Blood, 117(2), 591–594. doi:10.1182/blood-2010-03-275305.PubMedCentralPubMedCrossRefGoogle Scholar
  61. Lee, K. S., Lee, H. K., Hayflick, J. S., Lee, Y. C., & Puri, K. D. (2006) Inhibition of phosphoinositide 3-kinase delta attenuates allergic airway inflammation and hyperresponsiveness in murine asthma model. The FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 20(3), 455–465. doi:10.1096/fj.05-5045com.CrossRefGoogle Scholar
  62. Lenzen, C., Cool, R. H., Prinz, H., Kuhlmann, J., & Wittinghofer, A. (1998). Kinetic analysis by fluorescence of the interaction between Ras and the catalytic domain of the guanine nucleotide exchange factor Cdc25Mm. Biochemistry, 37(20), 7420–7430. doi:10.1021/bi972621j.PubMedCrossRefGoogle Scholar
  63. Leslie, N. R., Maccario, H., Spinelli, L., & Davidson, L. (2009) The significance of PTEN’s protein phosphatase activity. Advances in Enzyme Regulation, 49(1):190–196. doi:http://dx.doi.org/10.1016/j.advenzreg.2008.12.002.PubMedCrossRefGoogle Scholar
  64. Liang, J., & Slingerland, J. M. (2003). Multiple roles of the PI3K/PKB (Akt) pathway in cell cycle progression. Cell Cycle, 2(4), 339–345.PubMedCrossRefGoogle Scholar
  65. Llorian, M., Stamataki, Z., Hill, S., Turner, M., & Martensson, I. L. (2007). The PI3K p110delta is required for down-regulation of RAG expression in immature B cells. Journal of Immunology, 178(4), 1981–1985.CrossRefGoogle Scholar
  66. Lucas, C. L., Kuehn, H. S., Zhao, F., Niemela, J. E., Deenick, E. K., Palendira, U., et al. (2014). Dominant-activating germline mutations in the gene encoding the PI(3)K catalytic subunit p110delta result in T cell senescence and human immunodeficiency. Nature Immunology, 15(1), 88–97. doi:10.1038/ni.2771.PubMedCentralPubMedCrossRefGoogle Scholar
  67. Mackay, F., Woodcock, S. A., Lawton, P., Ambrose, C., Baetscher, M., Schneider, P., et al. (1999). Mice transgenic for BAFF develop lymphocytic disorders along with autoimmune manifestations. The Journal of Experimental Medicine, 190(11), 1697–1710.PubMedCentralPubMedCrossRefGoogle Scholar
  68. Mamillapalli, R., Gavrilova, N., Mihaylova, V. T., Tsvetkov, L. M., Wu, H., Zhang, H., et al. (2001) PTEN regulates the ubiquitin-dependent degradation of the CDK inhibitor p27(KIP1) through the ubiquitin E3 ligase SCF(SKP2). Current Biology: CB, 11(4), 263–267.PubMedCrossRefGoogle Scholar
  69. McKenzie, G., Ward, G., Stallwood, Y., Briend, E., Papadia, S., Lennard, A., et al. (2006). Cellular Notch responsiveness is defined by phosphoinositide 3-kinase-dependent signals. BMC Cell Biology, 7, 10. doi:10.1186/1471-2121-7-10.PubMedCentralPubMedCrossRefGoogle Scholar
  70. Miller, D. J., & Hayes, C. E. (1991). Phenotypic and genetic characterization of a unique B lymphocyte deficiency in strain A/WySnJ mice. European Journal of Immunology, 21(5), 1123–1130. doi:10.1002/eji.1830210506.PubMedCrossRefGoogle Scholar
  71. Moon, K. D., Post, C. B., Durden, D. L., Zhou, Q., De P, Harrison, M. L., et al. (2005). Molecular basis for a direct interaction between the Syk protein-tyrosine kinase and phosphoinositide 3-kinase. The Journal of Biological Chemistry, 280(2), 1543–1551. doi:10.1074/jbc.M407805200.Google Scholar
  72. Muise-Helmericks, R. C., Grimes, H. L., Bellacosa, A., Malstrom, S. E., Tsichlis, P. N., & Rosen, N. (1998). Cyclin D expression is controlled post-transcriptionally via a phosphatidylinositol 3-kinase/Akt-dependent pathway. The Journal of Biological Chemistry, 273(45), 29864–29872.PubMedCrossRefGoogle Scholar
  73. Okada, T., Maeda, A., Iwamatsu, A., Gotoh, K., & Kurosaki, T. (2000). BCAP: The tyrosine kinase substrate that connects B cell receptor to phosphoinositide 3-kinase activation. Immunity, 13(6), 817–827.PubMedCrossRefGoogle Scholar
  74. Okkenhaug, K., & Fruman, D. A. (2010). PI3Ks in lymphocyte signaling and development. Current Topics in Microbiology and Immunology, 346, 57–85. doi:10.1007/82_2010_45.PubMedCentralPubMedGoogle Scholar
  75. Okkenhaug, K., & Vanhaesebroeck, B. (2003). PI3K in lymphocyte development, differentiation and activation. Nature Reviews Immunology, 3(4), 317–330. doi:10.1038/nri1056.PubMedCrossRefGoogle Scholar
  76. Okkenhaug, K., Bilancio, A., Farjot, G., Priddle, H., Sancho, S., Peskett, E., et al. (2002). Impaired B and T cell antigen receptor signaling in p110delta PI 3-kinase mutant mice. Science, 297(5583), 1031–1034. doi:10.1126/science.1073560.PubMedGoogle Scholar
  77. Osborne, B. A., & Minter, L. M. (2007). Notch signalling during peripheral T-cell activation and differentiation. Nature Reviews Immunology, 7(1), 64–75. doi:10.1038/nri1998.PubMedCrossRefGoogle Scholar
  78. Patke, A., Mecklenbrauker, I., Erdjument-Bromage, H., Tempst, P., & Tarakhovsky, A. (2006). BAFF controls B cell metabolic fitness through a PKC beta- and Akt-dependent mechanism. The Journal of Experimental Medicine, 203(11), 2551–2562. doi:10.1084/jem.20060990.PubMedCentralPubMedCrossRefGoogle Scholar
  79. Patrussi, L., & Baldari, C. T. (2008). Intracellular mediators of CXCR4-dependent signaling in T cells. Immunology Letters, 115(2), 75–82. doi:10.1016/j.imlet.2007.10.012.PubMedCrossRefGoogle Scholar
  80. Patrussi, L., Capitani, N., Cannizzaro, E., Finetti, F., Lucherini, O. M., Pelicci, P. G., et al. (2014). Negative regulation of chemokine receptor signaling and B-cell chemotaxis by p66Shc. Cell Death & Disease, 5, e1068. doi:10.1038/cddis.2014.44.CrossRefGoogle Scholar
  81. Petro, J. B., & Khan, W. N. (2001). Phospholipase C-gamma 2 couples Bruton’s tyrosine kinase to the NF-kappaB signaling pathway in B lymphocytes. The Journal of Biological Chemistry, 276(3), 1715–1719. doi:10.1074/jbc.M009137200.PubMedCrossRefGoogle Scholar
  82. Petro, J. B., Rahman, S. M., Ballard, D. W., & Khan, W. N. (2000). Bruton’s tyrosine kinase is required for activation of IkappaB kinase and nuclear factor kappaB in response to B cell receptor engagement. The Journal of Experimental Medicine, 191(10), 1745–1754.PubMedCentralPubMedCrossRefGoogle Scholar
  83. Pillai, S., & Cariappa, A. (2009). The follicular versus marginal zone B lymphocyte cell fate decision. Nature Reviews Immunology, 9(11), 767–777. doi:10.1038/nri2656.PubMedCrossRefGoogle Scholar
  84. Puri, K. D., Doggett, T. A., Douangpanya, J., Hou, Y., Tino, W. T., Wilson, T., et al. (2004). Mechanisms and implications of phosphoinositide 3-kinase delta in promoting neutrophil trafficking into inflamed tissue. Blood, 103(9), 3448–3456. doi:10.1182/blood-2003-05-1667.PubMedCrossRefGoogle Scholar
  85. Ramadani, F., Bolland, D. J., Garcon, F., Emery, J. L., Vanhaesebroeck, B., Corcoran, A. E., et al. (2010). The PI3K isoforms p110alpha and p110delta are essential for pre-B cell receptor signaling and B cell development. Science Signaling, 3(134), ra60. doi:10.1126/scisignal.2001104.PubMedCentralPubMedCrossRefGoogle Scholar
  86. Rawlings, D. J., Saffran, D. C., Tsukada, S., Largaespada, D. A., Grimaldi, J. C., Cohen, L., Mohr, R. N., Bazan, J. F., Howard, M., Copeland, N. G., et al. (1993). Mutation of unique region of Bruton’s tyrosine kinase in immunodeficient XID mice. Science, 261(5119), 358–361.PubMedCrossRefGoogle Scholar
  87. Rawlings, D. J., Scharenberg, A. M., Park, H., Wahl, M. I., Lin, S., Kato, R. M., et al. (1996). Activation of BTK by a phosphorylation mechanism initiated by SRC family kinases. Science, 271(5250), 822–825.PubMedCrossRefGoogle Scholar
  88. Reif, K., Okkenhaug, K., Sasaki, T., Penninger, J. M., Vanhaesebroeck, B., & Cyster, J. G. (2004). Cutting edge: Differential roles for phosphoinositide 3-kinases, p110gamma and p110delta, in lymphocyte chemotaxis and homing. Journal of Immunology, 173(4), 2236–2240.CrossRefGoogle Scholar
  89. Reth, M., & Wienands, J. (1997). Initiation and processing of signals from the B cell antigen receptor. Annual Review of Immunology, 15, 453–479.PubMedCrossRefGoogle Scholar
  90. Ringshausen, I., Schneller, F., Bogner, C., Hipp, S., Duyster, J., Peschel, C., et al. (2002). Constitutively activated phosphatidylinositol-3 kinase (PI-3K) is involved in the defect of apoptosis in B-CLL: Association with protein kinase Cdelta. Blood, 100(10), 3741–3748. doi:10.1182/blood-2002-02-0539.PubMedCrossRefGoogle Scholar
  91. Rodriguez-Viciana, P., Warne, P. H., Khwaja, A., Marte, B. M., Pappin, D., Das, P., et al. (1997). Role of phosphoinositide 3-OH kinase in cell transformation and control of the actin cytoskeleton by Ras. Cell, 89(3), 457–467.PubMedCrossRefGoogle Scholar
  92. Rodriguez-Viciana, P., Sabatier, C., & McCormick, F. (2004). Signaling specificity by Ras family GTPases is determined by the full spectrum of effectors they regulate. Molecular and Cellular Biology, 24(11), 4943–4954. doi:10.1128/MCB.24.11.4943-4954.2004.PubMedCentralPubMedCrossRefGoogle Scholar
  93. Rommel, C., Camps, M., & Ji, H. (2007). PI3K delta and PI3K gamma: Partners in crime in inflammation in rheumatoid arthritis and beyond? Nature reviews Immunology, 7(3), 191–201. doi:10.1038/nri2036.PubMedCrossRefGoogle Scholar
  94. Brooks, S. A., & Blackshear, P. J. (2013). Tristetraprolin (TTP): Interactions with mRNA and proteins, and current thoughts on mechanisms of action. Biochimica et biophysica acta, 1829(6–7), 666–679. doi:10.1016/j.bbagrm.2013.02.003.PubMedCentralPubMedCrossRefGoogle Scholar
  95. Saito, T., Chiba, S., Ichikawa, M., Kunisato, A., Asai, T., Shimizu, K., et al. (2003). Notch2 Is preferentially expressed in mature B cells and indispensible for marginal zone B lineage development. Immunity, 18, 675–685.PubMedCrossRefGoogle Scholar
  96. Salim, K., Bottomley, M. J., Querfurth, E., Zvelebil, M. J., Gout, I., Scaife, R., et al. (1996). Distinct specificity in the recognition of phosphoinositides by the pleckstrin homology domains of dynamin and Bruton’s tyrosine kinase. The EMBO Journal, 15(22), 6241–6250.PubMedCentralPubMedGoogle Scholar
  97. Sawyer, C., Sturge, J., Bennett, D. C., O’Hare, M. J., Allen, W. E., Bain, J., et al. (2003). Regulation of breast cancer cell chemotaxis by the phosphoinositide 3-kinase p110delta. Cancer Research, 63(7), 1667–1675.PubMedGoogle Scholar
  98. Scharenberg, A. M., & Kinet, J. P. (1998). PtdIns-3,4,5-P3: A regulatory nexus between tyrosine kinases and sustained calcium signals. Cell, 94(1), 5–8.PubMedCrossRefGoogle Scholar
  99. Schiemann, B., Gommerman, J. L., Vora, K., Cachero, T. G., Shulga-Morskaya, S., Dobles, M., et al. (2001). An essential role for BAFF in the normal development of B cells through a BCMA-independent pathway. Science, 293(5537), 2111–2114. doi:10.1126/science.1061964.PubMedCrossRefGoogle Scholar
  100. Schmidlin, M., Lu, M., Leuenberger, S. A., Stoecklin, G., Mallaun, M., Gross, B., et al. (2004). The ARE-dependent mRNA-destabilizing activity of BRF1 is regulated by protein kinase B. The EMBO Journal, 23(24), 4760–4769. doi:10.1038/sj.emboj.7600477.PubMedCentralPubMedCrossRefGoogle Scholar
  101. Shen, W. H., Balajee, A. S., Wang, J., Wu, H., Eng, C., Pandolfi, P. P., et al. (2007). Essential role for nuclear PTEN in maintaining chromosomal integrity. Cell, 128(1), 157–170. doi:10.1016/j.cell.2006.11.042.PubMedCrossRefGoogle Scholar
  102. Skon, C. N., Lee, J. Y., Anderson, K. G., Masopust, D., Hogquist, K. A., & Jameson, S. C. (2013). Transcriptional downregulation of S1pr1 is required for the establishment of resident memory CD8+ T cells. Nature Immunology, 14(12), 1285–1293. doi:10.1038/ni.2745.PubMedCrossRefGoogle Scholar
  103. Song, M. S., Carracedo, A., Salmena, L., Song, S. J., Egia, A., Malumbres, M., et al. (2011). Nuclear PTEN regulates the APC-CDH1 tumor-suppressive complex in a phosphatase-independent manner. Cell, 144(2), 187–199. doi:10.1016/j.cell.2010.12.020.PubMedCentralPubMedCrossRefGoogle Scholar
  104. Srinivasan, L., Sasaki, Y., Calado, D. P., Zhang, B., Paik, J. H., DePinho, R. A., et al. (2009). PI3 kinase signals BCR-dependent mature B cell survival. Cell, 139(3), 573–586. doi:10.1016/j.cell.2009.08.041.PubMedCentralPubMedCrossRefGoogle Scholar
  105. Su, T. T., Guo, B., Kawakami, Y., Sommer, K., Chae, K., Humphries, L. A., et al. (2002). PKC-beta controls I kappa B kinase lipid raft recruitment and activation in response to BCR signaling. Nature Immunology, 3(8), 780–786. doi:10.1038/ni823.PubMedGoogle Scholar
  106. Su, T. T., Guo, B., Wei, B., Braun, J., & Rawlings, D. J. (2004). Signaling in transitional type 2 B cells is critical for peripheral B-cell development. Immunological Reviews, 197, 161–178.PubMedCrossRefGoogle Scholar
  107. Suzuki, H., Terauchi, Y., Fujiwara, M., Aizawa, S., Yazaki, Y., Kadowaki, T., et al. (1999). Xid-like immunodeficiency in mice with disruption of the p85alpha subunit of phosphoinositide 3-kinase. Science, 283(5400), 390–392.PubMedCrossRefGoogle Scholar
  108. Taylor, G. A., Carballo, E., Lee, D. M., Lai, W. S., Thompson, M. J., Patel, D. D., et al. (1996). A pathogenic role for TNFα in the syndrome of cachexia, arthritis, and autoimmunity resulting from Tristetraprolin (TTP) deficiency. Immunity, 4, 445–454.PubMedCrossRefGoogle Scholar
  109. Tedder, T. F., Inaoki, M., & Sato, S. (1997). The CD19-CD21 complex regulates signal transduction thresholds governing humoral immunity and autoimmunity. Immunity, 6(2), 107–118.PubMedCrossRefGoogle Scholar
  110. Thompson, J. S., Bixler, S. A., Qian, F., Vora, K., Scott, M. L., Cachero, T. G., et al. (2001). BAFF-R, a newly identified TNF receptor that specifically interacts with BAFF. Science, 293(5537), 2108–2111. doi:10.1126/science.1061965.PubMedCrossRefGoogle Scholar
  111. Tibarewal, P., Zilidis, G., Spinelli, L., Schurch, N., Maccario, H., Gray, A., et al. (2012). PTEN protein phosphatase activity correlates with control of gene expression and invasion, a tumor-suppressing phenotype, but not with AKT activity. Science Signaling, 5(213), ra18. doi:10.1126/scisignal.2002138.PubMedCrossRefGoogle Scholar
  112. Troutman, T. D., Hu, W., Fulenchek, S., Yamazaki, T., Kurosaki, T., Bazan, J. F., et al. (2012). Role for B-cell adapter for PI3K (BCAP) as a signaling adapter linking Toll-like receptors (TLRs) to serine/threonine kinases PI3K/Akt. Proceedings of the National Academy of Sciences of the United States of America, 109(1), 273–278. doi:10.1073/pnas.1118579109.PubMedCentralPubMedCrossRefGoogle Scholar
  113. Turner, M. (2002). The role of Vav proteins in B cell responses. Advances in Experimental Medicine and Biology, 512, 29–34.PubMedCrossRefGoogle Scholar
  114. Turner, M., & Billadeau, D. D. (2002). VAV proteins as signal integrators for multi-subunit immune-recognition receptors. Nature Reviews Immunology, 2(7), 476–486. doi:10.1038/nri840.PubMedCrossRefGoogle Scholar
  115. Turner, M., & Hodson, D. (2012). Regulation of lymphocyte development and function by RNA-binding proteins. Current Opinion in Immunology, 24(2), 160–165. doi:10.1016/j.coi.2012.01.011.PubMedCrossRefGoogle Scholar
  116. Turner, M., Gulbranson-Judge, A., Quinn, M. E., Walters, A. E., MacLennan, I. C. M., & Tybulewicz, V. L. (1997a). Syk Tyrosine kinase is required for the positive selection of immature B cells into the recirculating B Cell pool. The Journal of Experimental Medicine, 186(12), 2013–2021.PubMedCentralPubMedCrossRefGoogle Scholar
  117. Turner, M., Mee, P. J., Walters, A. E., Quinn, M. E., Mellor, A. L., Zamoyska, R., et al. (1997b). A requirement for the Rho-family GTP exchange factor Vav in positive and negative selection of thymocytes. Immunity, 7(4), 451–460.PubMedCrossRefGoogle Scholar
  118. Tuveson, D. A., Carter, R. H., Soltoff, S. P., & Fearon, D. T. (1993). CD19 of B cells as a surrogate kinase insert region to bind phosphatidylinositol 3-kinase. Science, 260(5110), 986–989.PubMedCrossRefGoogle Scholar
  119. Tze, L. E., Schram, B. R., Lam, K. P., Hogquist, K. A., Hippen, K. L., Liu, J., et al. (2005). Basal immunoglobulin signaling actively maintains developmental stage in immature B cells. PLoS Biology, 3(3), e82. doi:10.1371/journal.pbio.0030082.PubMedCentralPubMedCrossRefGoogle Scholar
  120. Vanhaesebroeck, B., & Khwaja, A. (2014). PI3Kdelta inhibition hits a sensitive spot in B cell malignancies. Cancer Cell, 25(3), 269–271. doi:10.1016/j.ccr.2014.02.012.PubMedCrossRefGoogle Scholar
  121. Verkoczy, L., Duong, B., Skog, P., Ait-Azzouzene, D., Puri, K., Vela, J. L., et al. (2007). Basal B cell receptor-directed phosphatidylinositol 3-kinase signaling turns off RAGs and promotes B cell-positive selection. Journal of Immunology, 178(10), 6332–6341.CrossRefGoogle Scholar
  122. Vigorito, E., Bardi, G., Glassford, J., Lam, E. W., Clayton, E., & Turner, M. (2004). Vav-dependent and vav-independent phosphatidylinositol 3-kinase activation in murine B cells determined by the nature of the stimulus. Journal of Immunology, 173(5), 3209–3214.CrossRefGoogle Scholar
  123. Vigorito, E., Gambardella, L., Colucci, F., McAdam, S., & Turner, M. (2005). Vav proteins regulate peripheral B-cell survival. Blood, 106(7), 2391–2398. doi:10.1182/blood-2004-12-4894.PubMedCrossRefGoogle Scholar
  124. Vlach, J., Hennecke, S., Alevizopoulos, K., Conti, D., & Amati, B. (1996). Growth arrest by the cyclin-dependent kinase inhibitor p27Kip1 is abrogated by c-Myc. The EMBO Journal, 15(23), 6595–6604.PubMedCentralPubMedGoogle Scholar
  125. Ward, S. G. (2004). Do phosphoinositide 3-kinases direct lymphocyte navigation? Trends in Immunology, 25(2), 67–74. doi:10.1016/j.it.2003.12.003.PubMedCrossRefGoogle Scholar
  126. Winkelmann, R., Sandrock, L., Porstner, M., Roth, E., Mathews, M., Hobeika, E., et al. (2011). B cell homeostasis and plasma cell homing controlled by Kruppel-like factor 2. Proceedings of the National Academy of Sciences of the United States of America, 108(2), 710–715. doi:10.1073/pnas.1012858108.Google Scholar
  127. Woodland, R. T., Fox, C. J., Schmidt, M. R., Hammerman, P. S., Opferman, J. T., Korsmeyer, S. J., et al. (2008). Multiple signaling pathways promote B lymphocyte stimulator dependent B-cell growth and survival. Blood, 111(2), 750–760. doi:10.1182/blood-2007-03-077222.PubMedCentralPubMedCrossRefGoogle Scholar
  128. Yusuf, I., Zhu, X., Kharas, M. G., Chen, J., & Fruman, D. A. (2004). Optimal B-cell proliferation requires phosphoinositide 3-kinase-dependent inactivation of FOXO transcription factors. Blood, 104(3), 784–787. doi:10.1182/blood-2003-09-3071.PubMedCrossRefGoogle Scholar
  129. Zhou, B. P., Liao, Y., Xia, W., Spohn, B., Lee, M. H., & Hung, M. C. (2001). Cytoplasmic localization of p21Cip1/WAF1 by Akt-induced phosphorylation in HER-2/neu-overexpressing cells. Nature Cell Biology, 3(3), 245–252. doi:10.1038/35060032.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Laboratory of Lymphocyte Signalling and DevelopmentThe Babraham InstituteBabrahamUK

Personalised recommendations