Advertisement

Induction of Immune Tolerance to Dietary Antigens

  • Kwang Soon Kim
  • Charles D. SurhEmail author
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 850)

Abstract

The intestinal immune system is continuously exposed to massive amounts of diverse antigens derived from both food and intestinal microbes. Immunological tolerance to these enteric antigens is critical for ensuring intestinal and systemic immune homeostasis. Oral tolerance is a specific type of peripheral tolerance induced by the exposure of antigen via the oral route, emphasizing the role of intestinal immune system for preventing unnecessary hypersensitivity reactions to innocuous dietary and microbial antigens. Here, we discuss how dietary antigens are recognized by intestinal immune systems and highlight the role of Foxp3+ regulatory CD4+ T cells (Tregs) in establishment of oral tolerance, the tolerogenic features of intestinal dendritic cells that induce development of Foxp3+ Tregs, and the factors that promote development of the intestinal dendritic cells.

Keywords

Intestinal immune system Gut-associated lymphoid tissues (GALT) Dietary antigens Foxp3+ regulatory CD4+ T cells Intestinal dendritic cells 

Notes

Acknowledgements

We thank Drs. Sung Wook Hong and Yun Ji Park for commenting on the manuscript and creating illustrative figures. This work was supported by Institute for Basic Science (IBS).

References

  1. Abbas, A. K., Benoist, C., Bluestone, J. A., Campbell, D. J., Ghosh, S., Hori, S., et al. (2013). Regulatory T cells: Recommendations to simplify the nomenclature. Nature Immunology, 14(4), 307–308. doi:10.1038/ni.2554.PubMedCrossRefGoogle Scholar
  2. Akbari, O., DeKruyff, R. H., & Umetsu, D. T. (2001). Pulmonary dendritic cells producing IL-10 mediate tolerance induced by respiratory exposure to antigen. Nature Immunology, 2(8), 725–731. doi:10.1038/90667.PubMedCrossRefGoogle Scholar
  3. Annes, J. P., Munger, J. S., & Rifkin, D. B. (2003). Making sense of latent TGFbeta activation. Journal of Cell Science, 116(Pt 2), 217–224.PubMedCrossRefGoogle Scholar
  4. Backhed, F., Ley, R. E., Sonnenburg, J. L., Peterson, D. A., & Gordon, J. I. (2005). Host-bacterial mutualism in the human intestine. Science, 307(5717), 1915–1920. doi:10.1126/science.1104816.PubMedCrossRefGoogle Scholar
  5. Barone, K. S., Jain, S. L., & Michael, J. G. (1995). Effect of in vivo depletion of CD4+ and CD8+ cells on the induction and maintenance of oral tolerance. Cellular Immunology, 163(1), 19–29. doi:10.1006/cimm.1995.1094.PubMedCrossRefGoogle Scholar
  6. Bekiaris, V., Persson, E. K., & Agace, W. W. (2014). Intestinal dendritic cells in the regulation of mucosal immunity. Immunological Reviews, 260(1), 86–101. doi:10.1111/imr.12194.PubMedCrossRefGoogle Scholar
  7. Bennett, C. L., Christie, J., Ramsdell, F., Brunkow, M. E., Ferguson, P. J., Whitesell, L., et al. (2001). The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nature Genetics, 27(1), 20–21. doi:10.1038/83713.PubMedCrossRefGoogle Scholar
  8. Benson, M. J., Pino-Lagos, K., Rosemblatt, M., & Noelle, R. J. (2007). All-trans retinoic acid mediates enhanced T reg cell growth, differentiation, and gut homing in the face of high levels of co-stimulation. The Journal of Experimental Medicine, 204(8), 1765–1774. doi:10.1084/jem.20070719.PubMedCentralPubMedCrossRefGoogle Scholar
  9. Bettelli, E., Carrier, Y., Gao, W., Korn, T., Strom, T. B., Oukka, M., et al. (2006). Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature, 441(7090), 235–238. doi:10.1038/nature04753.PubMedCrossRefGoogle Scholar
  10. Blomhoff, R., & Blomhoff, H. K. (2006). Overview of retinoid metabolism and function. Journal of Neurobiology, 66(7), 606–630. doi:10.1002/neu.20242.PubMedCrossRefGoogle Scholar
  11. Brunkow, M. E., Jeffery, E. W., Hjerrild, K. A., Paeper, B., Clark, L. B., Yasayko, S. A., et al. (2001). Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nature Genetics, 27(1), 68–73. doi:10.1038/83784.PubMedCrossRefGoogle Scholar
  12. Carmeliet, P., Schoonjans, L., Kieckens, L., Ream, B., Degen, J., Bronson, R., et al. (1994). Physiological consequences of loss of plasminogen activator gene function in mice. Nature, 368(6470), 419–424. doi:10.1038/368419a0.PubMedCrossRefGoogle Scholar
  13. Cassani, B., Villablanca, E. J., Quintana, F. J., Love, P. E., Lacy-Hulbert, A., Blaner, W. S., et al. (2011). Gut-tropic T cells that express integrin alpha4beta7 and CCR9 are required for induction of oral immune tolerance in mice. Gastroenterology, 141(6), 2109–2118. doi:10.1053/j.gastro.2011.09.015.PubMedCentralPubMedCrossRefGoogle Scholar
  14. Cerovic, V., Houston, S. A., Westlund, J., Utriainen, L., Davison, E. S., Scott, C. L., et al. (2014). Lymph-borne CD8alpha dendritic cells are uniquely able to cross-prime CD8 T cells with antigen acquired from intestinal epithelial cells. Mucosal Immunology. doi:10.1038/mi.2014.40.Google Scholar
  15. Cha, H. R., Chang, S. Y., Chang, J. H., Kim, J. O., Yang, J. Y., Kim, C. H., et al. (2010). Downregulation of Th17 cells in the small intestine by disruption of gut flora in the absence of retinoic acid. Journal of Immunology, 184(12), 6799–6806. doi:10.4049/jimmunol.0902944.CrossRefGoogle Scholar
  16. Chang, S. Y., Song, J. H., Guleng, B., Cotoner, C. A., Arihiro, S., Zhao, Y., et al. (2013). Circulatory antigen processing by mucosal dendritic cells controls CD8(+) T cell activation. Immunity, 38(1), 153–165. doi:10.1016/j.immuni.2012.09.018.PubMedCrossRefGoogle Scholar
  17. Chase, M. W. (1946). Inhibition of experimental drug allergy by prior feeding of the sensitizing agent. Proceedings of the Society for Experimental Biology and Medicine Society for Experimental Biology and Medicine (New York. NY), 61, 257–259.CrossRefGoogle Scholar
  18. Chaudhry, A., & Rudensky, A. Y. (2013). Control of inflammation by integration of environmental cues by regulatory T cells. The Journal of Clinical Investigation, 123(3), 939–944. doi:10.1172/JCI57175.PubMedCentralPubMedCrossRefGoogle Scholar
  19. Chaudhry, A., Rudra, D., Treuting, P., Samstein, R. M., Liang, Y., Kas, A., et al. (2009). CD4+ regulatory T cells control TH17 responses in a Stat3-dependent manner. Science, 326(5955), 986–991. doi:10.1126/science.1172702.PubMedCentralPubMedCrossRefGoogle Scholar
  20. Chaudhry, A., Samstein, R. M., Treuting, P., Liang, Y., Pils, M. C., Heinrich, J. M., et al. (2011). Interleukin-10 signaling in regulatory T cells is required for suppression of Th17 cell-mediated inflammation. Immunity, 34(4), 566–578. doi:10.1016/j.immuni.2011.03.018.PubMedCentralPubMedCrossRefGoogle Scholar
  21. Chen, Y., Kuchroo, V. K., Inobe, J., Hafler, D. A., & Weiner, H. L. (1994). Regulatory T cell clones induced by oral tolerance: Suppression of autoimmune encephalomyelitis. Science, 265(5176), 1237–1240.PubMedCrossRefGoogle Scholar
  22. Chen, Y., Inobe, J., & Weiner, H. L. (1995a). Induction of oral tolerance to myelin basic protein in CD8-depleted mice: Both CD4+ and CD8+ cells mediate active suppression. Journal of Immunology, 155(2), 910–916.Google Scholar
  23. Chen, Y., Inobe, J., Marks, R., Gonnella, P., Kuchroo, V. K., & Weiner, H. L. (1995b). Peripheral deletion of antigen-reactive T cells in oral tolerance. Nature, 376(6536), 177–180. doi:10.1038/376177a0.PubMedCrossRefGoogle Scholar
  24. Chen, W., Jin, W., Hardegen, N., Lei, K. J., Li, L., Marinos, N., et al. (2003). Conversion of peripheral CD4+ CD25- naive T cells to CD4+ CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. The Journal of Experimental Medicine, 198(12), 1875–1886. doi:10.1084/jem.20030152.PubMedCentralPubMedCrossRefGoogle Scholar
  25. Chirdo, F. G., Millington, O. R., Beacock-Sharp, H., & Mowat, A. M. (2005). Immunomodulatory dendritic cells in intestinal lamina propria. European Journal of Immunology, 35(6), 1831–1840.PubMedCrossRefGoogle Scholar
  26. Coombes, J. L., Siddiqui, K. R., Arancibia-Carcamo, C. V., Hall, J., Sun, C. M., Belkaid, Y., et al. (2007). A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism. The Journal of Experimental Medicine, 204(8), 1757–1764. doi:10.1084/jem.20070590.PubMedCentralPubMedCrossRefGoogle Scholar
  27. Crawford, S. E., Stellmach, V., Murphy-Ullrich, J. E., Ribeiro, S. M., Lawler, J., Hynes, R. O., et al. (1998). Thrombospondin-1 is a major activator of TGF-beta1 in vivo. Cell, 93(7), 1159–1170.PubMedCrossRefGoogle Scholar
  28. Cretney, E., Kallies, A., & Nutt, S. L. (2013). Differentiation and function of Foxp3(+) effector regulatory T cells. Trends in Immunology, 34(2), 74–80. doi:10.1016/j.it.2012.11.002.PubMedCrossRefGoogle Scholar
  29. Curotto de Lafaille, M. A., & Lafaille, J. J. (2009). Natural and adaptive foxp3+ regulatory T cells: More of the same or a division of labor? Immunity, 30(5), 626–635. doi:10.1016/j.immuni.2009.05.002.PubMedCrossRefGoogle Scholar
  30. Curotto de Lafaille, M. A., Kutchukhidze, N., Shen, S., Ding, Y., Yee, H., & Lafaille, J. J. (2008). Adaptive Foxp3+ regulatory T cell-dependent and -independent control of allergic inflammation. Immunity, 29(1), 114–126. doi:10.1016/j.immuni.2008.05.010.PubMedCrossRefGoogle Scholar
  31. Denning, T. L., Wang, Y. C., Patel, S. R., Williams, I. R., & Pulendran, B. (2007). Lamina propria macrophages and dendritic cells differentially induce regulatory and interleukin 17-producing T cell responses. Nature Immunology, 8(10), 1086–1094. doi:10.1038/ni1511.PubMedCrossRefGoogle Scholar
  32. Denning, T. L., Norris, B. A., Medina-Contreras, O., Manicassamy, S., Geem, D., Madan, R., et al. (2011). Functional specializations of intestinal dendritic cell and macrophage subsets that control Th17 and regulatory T cell responses are dependent on the T cell/APC ratio, source of mouse strain, and regional localization. Journal of Immunology, 187(2), 733–747. doi:10.4049/jimmunol.1002701.CrossRefGoogle Scholar
  33. Diehl, G. E., Longman, R. S., Zhang, J. X., Breart, B., Galan, C., Cuesta, A., et al. (2013). Microbiota restricts trafficking of bacteria to mesenteric lymph nodes by CX(3)CR1(hi) cells. Nature, 494(7435), 116–120. doi:10.1038/nature11809.PubMedCentralPubMedCrossRefGoogle Scholar
  34. Edelson, B. T., Kc, W., Juang, R., Kohyama, M., Benoit, L. A., Klekotka, P. A., et al. (2010). Peripheral CD103+ dendritic cells form a unified subset developmentally related to CD8alpha+ conventional dendritic cells. The Journal of Experimental Medicine, 207(4), 823–836. doi:10.1084/jem.20091627.PubMedCentralPubMedCrossRefGoogle Scholar
  35. Fallarino, F., Grohmann, U., Hwang, K. W., Orabona, C., Vacca, C., Bianchi, R., et al. (2003). Modulation of tryptophan catabolism by regulatory T cells. Nature Immunology, 4(12), 1206–1212. doi:10.1038/ni1003.PubMedCrossRefGoogle Scholar
  36. Fallarino, F., Grohmann, U., You, S., McGrath, B. C., Cavener, D. R., Vacca, C., et al. (2006). The combined effects of tryptophan starvation and tryptophan catabolites down-regulate T cell receptor zeta-chain and induce a regulatory phenotype in naive T cells. Journal of Immunology, 176(11), 6752–6761.CrossRefGoogle Scholar
  37. Fantini, M. C., Becker, C., Monteleone, G., Pallone, F., Galle, P. R., & Neurath, M. F. (2004). Cutting edge: TGF-beta induces a regulatory phenotype in CD4+ CD25- T cells through Foxp3 induction and down-regulation of Smad7. Journal of Immunology, 172(9), 5149–5153.CrossRefGoogle Scholar
  38. Farache, J., Koren, I., Milo, I., Gurevich, I., Kim, K. W., Zigmond, E., et al. (2013a). Luminal bacteria recruit CD103+ dendritic cells into the intestinal epithelium to sample bacterial antigens for presentation. Immunity, 38(3), 581–595. doi:10.1016/j.immuni.2013.01.009.PubMedCentralPubMedCrossRefGoogle Scholar
  39. Farache, J., Zigmond, E., Shakhar, G., & Jung, S. (2013b). Contributions of dendritic cells and macrophages to intestinal homeostasis and immune defense. Immunology and Cell Biology, 91(3), 232–239. doi:10.1038/icb.2012.79.PubMedCrossRefGoogle Scholar
  40. Fontenot, J. D., Gavin, M. A., & Rudensky, A. Y. (2003). Foxp3 programs the development and function of CD4+ CD25+ regulatory T cells. Nature Immunology, 4(4), 330–336. doi:10.1038/ni904.PubMedCrossRefGoogle Scholar
  41. Fujimoto, K., Karuppuchamy, T., Takemura, N., Shimohigoshi, M., Machida, T., Haseda, Y., et al. (2011). A new subset of CD103+ CD8alpha+ dendritic cells in the small intestine expresses TLR3, TLR7, and TLR9 and induces Th1 response and CTL activity. Journal of Immunology, 186(11), 6287–6295. doi:10.4049/jimmunol.1004036.CrossRefGoogle Scholar
  42. Garside, P., Steel, M., Liew, F. Y., & Mowat, A. M. (1995). CD4+ but not CD8+ T cells are required for the induction of oral tolerance. International Immunology, 7(3), 501–504.PubMedCrossRefGoogle Scholar
  43. Gottschalk R. A., Corse E., & Allison J. P. (2012). Expression of helios in peripherally induced Foxp3+ regulatory T cells. Journal of immunology 188(3): 976–980. doi:10.4049/jimmunol.1102964.Google Scholar
  44. Guilliams, M., Crozat, K., Henri, S., Tamoutounour, S., Grenot, P., Devilard, E., et al. (2010). Skin-draining lymph nodes contain dermis-derived CD103(−) dendritic cells that constitutively produce retinoic acid and induce Foxp3(+) regulatory T cells. Blood, 115(10), 1958–1968. doi:10.1182/blood-2009-09-245274.PubMedCrossRefGoogle Scholar
  45. Guo, Z., Jang, M. H., Otani, K., Bai, Z., Umemoto, E., Matsumoto, M., et al. (2008). CD4+ CD25+ regulatory T cells in the small intestinal lamina propria show an effector/memory phenotype. International Immunology, 20(3), 307–315. doi:10.1093/intimm/dxm143.PubMedCrossRefGoogle Scholar
  46. Gutgemann, I., Fahrer, A. M., Altman, J. D., Davis, M. M., & Chien, Y. H. (1998). Induction of rapid T cell activation and tolerance by systemic presentation of an orally administered antigen. Immunity, 8(6), 667–673.PubMedCrossRefGoogle Scholar
  47. Hadis, U., Wahl, B., Schulz, O., Hardtke-Wolenski, M., Schippers, A., Wagner, N., et al. (2011). Intestinal tolerance requires gut homing and expansion of FoxP3+ regulatory T cells in the lamina propria. Immunity, 34(2), 237–246. doi:10.1016/j.immuni.2011.01.016.PubMedCrossRefGoogle Scholar
  48. Haribhai, D., Lin, W., Edwards, B., Ziegelbauer, J., Salzman, N. H., Carlson, M. R., et al. (2009). A central role for induced regulatory T cells in tolerance induction in experimental colitis. Journal of Immunology, 182(6), 3461–3468. doi:10.4049/jimmunol.0802535.CrossRefGoogle Scholar
  49. Haribhai, D., Williams, J. B., Jia, S., Nickerson, D., Schmitt, E. G., Edwards, B., et al. (2011). A requisite role for induced regulatory T cells in tolerance based on expanding antigen receptor diversity. Immunity, 35(1), 109–122. doi:10.1016/j.immuni.2011.03.029.PubMedCentralPubMedCrossRefGoogle Scholar
  50. Hashimoto, D., Miller, J., & Merad, M. (2011). Dendritic cell and macrophage heterogeneity in vivo. Immunity, 35(3), 323–335.PubMedCentralPubMedCrossRefGoogle Scholar
  51. Hill, J. A., Feuerer, M., Tash, K., Haxhinasto, S., Perez, J., Melamed, R., et al. (2007). Foxp3 transcription-factor-dependent and -independent regulation of the regulatory T cell transcriptional signature. Immunity, 27(5), 786–800. doi:10.1016/j.immuni.2007.09.010.PubMedCrossRefGoogle Scholar
  52. Hill, J. A., Hall, J. A., Sun, C. M., Cai, Q., Ghyselinck, N., Chambon, P., et al. (2008). Retinoic acid enhances Foxp3 induction indirectly by relieving inhibition from CD4+CD44hi cells. Immunity, 29(5), 758–770. doi:10.1016/j.immuni.2008.09.018.PubMedCentralPubMedCrossRefGoogle Scholar
  53. Hori, S., Nomura, T., & Sakaguchi, S. (2003). Control of regulatory T cell development by the transcription factor Foxp3. Science, 299(5609), 1057–1061. doi:10.1126/science.1079490.PubMedCrossRefGoogle Scholar
  54. Hsieh, C. S., Zheng, Y., Liang, Y., Fontenot, J. D., & Rudensky, A. Y. (2006). An intersection between the self-reactive regulatory and nonregulatory T cell receptor repertoires. Nature Immunology, 7(4), 401–410. doi:10.1038/ni1318.PubMedCrossRefGoogle Scholar
  55. Huang, F. P., Platt, N., Wykes, M., Major, J. R., Powell, T. J., Jenkins, C. D., et al. (2000). A discrete subpopulation of dendritic cells transports apoptotic intestinal epithelial cells to T cell areas of mesenteric lymph nodes. The Journal of Experimental Medicine, 191(3), 435–444.PubMedCentralPubMedCrossRefGoogle Scholar
  56. Iliev, I. D., Mileti, E., Matteoli, G., Chieppa, M., & Rescigno, M. (2009). Intestinal epithelial cells promote colitis-protective regulatory T-cell differentiation through dendritic cell conditioning. Mucosal Immunology, 2(4), 340–350. doi:10.1038/mi.2009.13.PubMedCrossRefGoogle Scholar
  57. Iwata, M., Hirakiyama, A., Eshima, Y., Kagechika, H., Kato, C., & Song, S. Y. (2004). Retinoic acid imprints gut-homing specificity on T cells. Immunity, 21(4), 527–538. doi:10.1016/j.immuni.2004.08.011.PubMedCrossRefGoogle Scholar
  58. Jaensson-Gyllenback, E., Kotarsky, K., Zapata, F., Persson, E. K., Gundersen, T. E., Blomhoff, R., et al. (2011). Bile retinoids imprint intestinal CD103+ dendritic cells with the ability to generate gut-tropic T cells. Mucosal Immunology, 4(4), 438–447. doi:10.1038/mi.2010.91.PubMedCentralPubMedCrossRefGoogle Scholar
  59. Jang, M. H., Sougawa, N., Tanaka, T., Hirata, T., Hiroi, T., Tohya, K., et al. (2006). CCR7 is critically important for migration of dendritic cells in intestinal lamina propria to mesenteric lymph nodes. Journal of Immunology, 176(2), 803–810.CrossRefGoogle Scholar
  60. Johansson-Lindbom, B., Svensson, M., Pabst, O., Palmqvist, C., Marquez, G., Forster, R., et al. (2005). Functional specialization of gut CD103+ dendritic cells in the regulation of tissue-selective T cell homing. The Journal of Experimental Medicine, 202(8), 1063–1073. doi:10.1084/jem.20051100.PubMedCentralPubMedCrossRefGoogle Scholar
  61. Joly, E., & Hudrisier, D. (2003). What is trogocytosis and what is its purpose? Nature Immunology, 4(9), 815. doi:10.1038/ni0903-815.PubMedCrossRefGoogle Scholar
  62. Jordan, M. S., Boesteanu, A., Reed, A. J., Petrone, A. L., Holenbeck, A. E., Lerman, M. A., et al. (2001). Thymic selection of CD4+ CD25+ regulatory T cells induced by an agonist self-peptide. Nature Immunology, 2(4), 301–306. doi:10.1038/86302.PubMedCrossRefGoogle Scholar
  63. Josefowicz, S. Z., Niec, R. E., Kim, H. Y., Treuting, P., Chinen, T., Zheng, Y., et al. (2012). Extrathymically generated regulatory T cells control mucosal TH2 inflammation. Nature, 482(7385), 395–399. doi:10.1038/nature10772.PubMedCentralPubMedCrossRefGoogle Scholar
  64. Khare, A., Krishnamoorthy, N., Oriss, T. B., Fei, M., Ray, P., & Ray, A. (2013). Cutting edge: Inhaled antigen upregulates retinaldehyde dehydrogenase in lung CD103+ but not plasmacytoid dendritic cells to induce Foxp3 de novo in CD4+ T cells and promote airway tolerance. Journal of Immunology, 191(1), 25–29. doi:10.4049/jimmunol.1300193.CrossRefGoogle Scholar
  65. Khattri, R., Cox, T., Yasayko, S. A., & Ramsdell, F. (2003). An essential role for scurfin in CD4+ CD25+ T regulatory cells. Nature Immunology, 4(4), 337–342. doi:10.1038/ni909.PubMedCrossRefGoogle Scholar
  66. Kiss, E. A., Vonarbourg, C., Kopfmann, S., Hobeika, E., Finke, D., Esser, C., et al. (2011). Natural aryl hydrocarbon receptor ligands control organogenesis of intestinal lymphoid follicles. Science, 334(6062), 1561–1565. doi:10.1126/science.1214914.PubMedCrossRefGoogle Scholar
  67. Koch, M. A., Tucker-Heard, G., Perdue, N. R., Killebrew, J. R., Urdahl, K. B., & Campbell, D. J. (2009). The transcription factor T-bet controls regulatory T cell homeostasis and function during type 1 inflammation. Nature Immunology, 10(6), 595–602. doi:10.1038/ni.1731.PubMedCentralPubMedCrossRefGoogle Scholar
  68. Kraus, T. A., Brimnes, J., Muong, C., Liu, J. H., Moran, T. M., Tappenden, K. A., et al. (2005). Induction of mucosal tolerance in Peyer’s patch-deficient, ligated small bowel loops. The Journal of Clinical Investigation, 115(8), 2234–2243.PubMedCentralPubMedCrossRefGoogle Scholar
  69. Lacy-Hulbert, A., Smith, A. M., Tissire, H., Barry, M., Crowley, D., Bronson, R. T., et al. (2007). Ulcerative colitis and autoimmunity induced by loss of myeloid alphav integrins. Proceedings of the National Academy of Sciences of the United States of America, 104(40), 15823–15828. doi:10.1073/pnas.0707421104.PubMedCentralPubMedCrossRefGoogle Scholar
  70. Laffont, S., Siddiqui, K. R., & Powrie, F. (2010). Intestinal inflammation abrogates the tolerogenic properties of MLN CD103+ dendritic cells. European Journal of Immunology, 40(7), 1877–1883. doi:10.1002/eji.200939957.PubMedCrossRefGoogle Scholar
  71. Macpherson, A. J., & Uhr, T. (2004). Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science, 303(5664), 1662–1665.PubMedCrossRefGoogle Scholar
  72. Mangan, P. R., Harrington, L. E., O’Quinn, D. B., Helms, W. S., Bullard, D. C., Elson, C. O., et al. (2006). Transforming growth factor-beta induces development of the T(H)17 lineage. Nature, 441(7090), 231–234. doi:10.1038/nature04754.PubMedCrossRefGoogle Scholar
  73. Manicassamy, S., & Pulendran, B. (2011). Dendritic cell control of tolerogenic responses. Immunological Reviews, 241(1), 206–227. doi:10.1111/j.1600-065X.2011.01015.x.PubMedCentralPubMedCrossRefGoogle Scholar
  74. Manicassamy, S., Ravindran, R., Deng, J., Oluoch, H., Denning, T. L., Kasturi, S. P., et al. (2009). Toll-like receptor 2-dependent induction of vitamin A-metabolizing enzymes in dendritic cells promotes T regulatory responses and inhibits autoimmunity. Nature Medicine, 15(4), 401–409. doi:10.1038/nm.1925.PubMedCentralPubMedCrossRefGoogle Scholar
  75. Manicassamy, S., Reizis, B., Ravindran, R., Nakaya, H., Salazar-Gonzalez, R. M., Wang, Y. C., et al. (2010). Activation of beta-catenin in dendritic cells regulates immunity versus tolerance in the intestine. Science, 329(5993), 849–853. doi:10.1126/science.1188510.PubMedCentralPubMedCrossRefGoogle Scholar
  76. Matteoli, G., Mazzini, E., Iliev, I. D., Mileti, E., Fallarino, F., Puccetti, P., et al. (2010). Gut CD103+ dendritic cells express indoleamine 2,3-dioxygenase which influences T regulatory/T effector cell balance and oral tolerance induction. Gut, 59(5), 595–604. doi:10.1136/gut.2009.185108.PubMedCrossRefGoogle Scholar
  77. Mattingly, J. A., & Waksman, B. H. (1978). Immunologic suppression after oral administration of antigen. I. Specific suppressor cells formed in rat Peyer’s patches after oral administration of sheep erythrocytes and their systemic migration. Journal of Immunology, 121(5), 1878–1883.Google Scholar
  78. Mazzini, E., Massimiliano, L., Penna, G., & Rescigno, M. (2014). Oral tolerance can be established via gap junction transfer of fed antigens from CX3CR1(+) macrophages to CD103(+) dendritic cells. Immunity, 40(2), 248–261. doi:10.1016/j.immuni.2013.12.012.PubMedCrossRefGoogle Scholar
  79. McDole, J. R., Wheeler, L. W., McDonald, K. G., Wang, B., Konjufca, V., Knoop, K. A., et al. (2012). Goblet cells deliver luminal antigen to CD103+ dendritic cells in the small intestine. Nature, 483(7389), 345–349. doi:10.1038/nature10863.PubMedCentralPubMedCrossRefGoogle Scholar
  80. Menard, S., Cerf-Bensussan, N., & Heyman, M. (2010). Multiple facets of intestinal permeability and epithelial handling of dietary antigens. Mucosal Immunology, 3(3), 247–259. doi:10.1038/mi.2010.5.PubMedCrossRefGoogle Scholar
  81. Mezrich, J. D., Fechner, J. H., Zhang, X., Johnson, B. P., Burlingham, W. J., & Bradfield, C. A. (2010). An interaction between kynurenine and the aryl hydrocarbon receptor can generate regulatory T cells. Journal of Immunology, 185(6), 3190–3198. doi:10.4049/jimmunol.0903670.CrossRefGoogle Scholar
  82. Monteleone, I., Platt, A. M., Jaensson, E., Agace, W. W., & Mowat, A. M. (2008). IL-10-dependent partial refractoriness to Toll-like receptor stimulation modulates gut mucosal dendritic cell function. European Journal of Immunology, 38(6), 1533–1547. doi:10.1002/eji.200737909.PubMedCentralPubMedCrossRefGoogle Scholar
  83. Moore, K. W., de Waal, M. R., Coffman, R. L., & O’Garra, A. (2001). Interleukin-10 and the interleukin-10 receptor. Annual Review of Immunology, 19, 683–765. doi:10.1146/annurev.immunol.19.1.683.PubMedCrossRefGoogle Scholar
  84. Mosconi, E., Rekima, A., Seitz-Polski, B., Kanda, A., Fleury, S., Tissandie, E., et al. (2010). Breast milk immune complexes are potent inducers of oral tolerance in neonates and prevent asthma development. Mucosal Immunology, 3(5), 461–474. doi:10.1038/mi.2010.23.PubMedCrossRefGoogle Scholar
  85. Mucida, D., Kutchukhidze, N., Erazo, A., Russo, M., Lafaille, J. J., & Curotto de Lafaille, M. A. (2005). Oral tolerance in the absence of naturally occurring Tregs. The Journal of Clinical Investigation, 115(7), 1923–1933. doi:10.1172/JCI24487.PubMedCentralPubMedCrossRefGoogle Scholar
  86. Mucida, D., Park, Y., Kim, G., Turovskaya, O., Scott, I., Kronenberg, M., et al. (2007). Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid. Science, 317(5835), 256–260. doi:10.1126/science.1145697.PubMedCrossRefGoogle Scholar
  87. Munn, D. H., & Mellor, A. L. (2013). Indoleamine 2,3 dioxygenase and metabolic control of immune responses. Trends in Immunology, 34(3), 137–143. doi:10.1016/j.it.2012.10.001.PubMedCentralPubMedCrossRefGoogle Scholar
  88. Munn, D. H., Sharma, M. D., Baban, B., Harding, H. P., Zhang, Y., Ron, D., et al. (2005). GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2,3-dioxygenase. Immunity, 22(5), 633–642. doi:10.1016/j.immuni.2005.03.013.PubMedCrossRefGoogle Scholar
  89. Murai, M., Turovskaya, O., Kim, G., Madan, R., Karp, C. L., Cheroutre, H., et al. (2009). Interleukin 10 acts on regulatory T cells to maintain expression of the transcription factor Foxp3 and suppressive function in mice with colitis. Nature Immunology, 10(11), 1178–1184. doi:10.1038/ni.1791.PubMedCentralPubMedCrossRefGoogle Scholar
  90. Niess, J. H., Brand, S., Gu, X., Landsman, L., Jung, S., McCormick, B. A., et al. (2005). CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science, 307(5707), 254–258. doi:10.1126/science.1102901.PubMedCrossRefGoogle Scholar
  91. Onodera, T., Jang, M. H., Guo, Z., Yamasaki, M., Hirata, T., Bai, Z., et al. (2009). Constitutive expression of IDO by dendritic cells of mesenteric lymph nodes: Functional involvement of the CTLA-4/B7 and CCL22/CCR4 interactions. Journal of Immunology, 183(9), 5608–5614. doi:10.4049/jimmunol.0804116.CrossRefGoogle Scholar
  92. Pabst, O., & Mowat, A. M. (2012).Oral tolerance to food protein. Mucosal Immunology, 5(3), 232–239. doi:10.1038/mi.2012.4.PubMedCentralPubMedCrossRefGoogle Scholar
  93. Pacholczyk, R., Ignatowicz, H., Kraj, P., & Ignatowicz, L. (2006). Origin and T cell receptor diversity of Foxp3+ CD4+ CD25+ T cells. Immunity, 25(2), 249–259. doi:10.1016/j.immuni.2006.05.016.PubMedCrossRefGoogle Scholar
  94. Paidassi, H., Acharya, M., Zhang, A., Mukhopadhyay, S., Kwon, M., Chow, C., et al. (2011). Preferential expression of integrin alphavbeta8 promotes generation of regulatory T cells by mouse CD103+ dendritic cells. Gastroenterology, 141(5), 1813–1820. doi:10.1053/j.gastro.2011.06.076.PubMedCentralPubMedCrossRefGoogle Scholar
  95. Parks, W. C., & Shapiro, S. D. (2001). Matrix metalloproteinases in lung biology. Respiratory Research, 2(1), 10–19. doi:10.1186/rr33.PubMedCentralPubMedCrossRefGoogle Scholar
  96. Persson, E. K., Uronen-Hansson, H., Semmrich, M., Rivollier, A., Hagerbrand, K., Marsal, J., et al. (2013). IRF4 transcription-factor-dependent CD103(+)CD11b(+) dendritic cells drive mucosal T helper 17 cell differentiation. Immunity, 38(5), 958–969. doi:10.1016/j.immuni.2013.03.009.PubMedCrossRefGoogle Scholar
  97. Peters, M. G., Secrist, H., Anders, K. R., Nash, G. S., Rich, S. R., & MacDermott, R. P. (1989). Normal human intestinal B lymphocytes. Increased activation compared with peripheral blood. The Journal of Clinical Investigation, 83(6), 1827–1833. doi:10.1172/JCI114088.PubMedCentralPubMedCrossRefGoogle Scholar
  98. Poulin, L. F., Reyal, Y., Uronen-Hansson, H., Schraml, B. U., Sancho, D., Murphy, K. M., et al. (2012). DNGR-1 is a specific and universal marker of mouse and human Batf3-dependent dendritic cells in lymphoid and nonlymphoid tissues. Blood, 119(25), 6052–6062. doi:10.1182/blood-2012-01-406967.PubMedCrossRefGoogle Scholar
  99. Qiu, J., Heller, J. J., Guo, X., Chen, Z. M., Fish, K., Fu, Y. X., et al. (2012). The aryl hydrocarbon receptor regulates gut immunity through modulation of innate lymphoid cells. Immunity, 36(1), 92–104. doi:10.1016/j.immuni.2011.11.011.PubMedCentralPubMedCrossRefGoogle Scholar
  100. Quintana, F. J., Basso, A. S., Iglesias, A. H., Korn, T., Farez, M. F., Bettelli, E., et al. (2008). Control of T(reg) and T(H)17 cell differentiation by the aryl hydrocarbon receptor. Nature, 453(7191), 65–71. doi:10.1038/nature06880.PubMedCrossRefGoogle Scholar
  101. Quintana, F. J., Murugaiyan, G., Farez, M. F., Mitsdoerffer, M., Tukpah, A. M., Burns, E. J., et al. (2010). An endogenous aryl hydrocarbon receptor ligand acts on dendritic cells and T cells to suppress experimental autoimmune encephalomyelitis. Proceedings of the National Academy of Sciences of the United States of America, 107(48), 20768–20773. doi:10.1073/pnas.1009201107.PubMedCentralPubMedCrossRefGoogle Scholar
  102. Rannug, A., Rannug, U., Rosenkranz, H. S., Winqvist, L., Westerholm, R., Agurell, E., et al. (1987). Certain photooxidized derivatives of tryptophan bind with very high affinity to the Ah receptor and are likely to be endogenous signal substances. The Journal of Biological Chemistry, 262(32), 15422–15427.PubMedGoogle Scholar
  103. Richman, L. K., Chiller, J. M., Brown, W. R., Hanson, D. G., & Vaz, N. M. (1978). Enterically induced immunologic tolerance. I. Induction of suppressor T lymphoyctes by intragastric administration of soluble proteins. Journal of Immunology, 121(6), 2429–2434.Google Scholar
  104. Rivollier, A., He, J., Kole, A., Valatas, V., & Kelsall, B. L. (2012). Inflammation switches the differentiation program of Ly6Chi monocytes from antiinflammatory macrophages to inflammatory dendritic cells in the colon. The Journal of Experimental Medicine, 209(1), 139–155. doi:10.1084/jem.20101387.PubMedCentralPubMedCrossRefGoogle Scholar
  105. Rubtsov, Y. P., Rasmussen, J. P., Chi, E. Y., Fontenot, J., Castelli, L., Ye, X., et al. (2008). Regulatory T cell-derived interleukin-10 limits inflammation at environmental interfaces. Immunity, 28(4), 546–558. doi:10.1016/j.immuni.2008.02.017.PubMedCrossRefGoogle Scholar
  106. Rudra, D., deRoos, P., Chaudhry, A., Niec, R. E., Arvey, A., Samstein, R. M., et al. (2012). Transcription factor Foxp3 and its protein partners form a complex regulatory network. Nature Immunology, 13(10), 1010–1019. doi:10.1038/ni.2402.PubMedCentralPubMedCrossRefGoogle Scholar
  107. Sakaguchi, S. (2005). Naturally arising Foxp3-expressing CD25+ CD4+ regulatory T cells in immunological tolerance to self and non-self. Nature Immunology, 6(4), 345–352. doi:10.1038/ni1178.PubMedCrossRefGoogle Scholar
  108. Sakaguchi, S., Sakaguchi, N., Asano, M., Itoh, M., & Toda, M. (1995). Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. Journal of Immunology, 155(3), 1151–1164.Google Scholar
  109. Satpathy, A. T., Briseno, C. G., Lee, J. S., Ng, D., Manieri, N. A., Kc, W., et al. (2013). Notch2-dependent classical dendritic cells orchestrate intestinal immunity to attaching-and-effacing bacterial pathogens. Nature Immunology, 14(9), 937–948. doi:10.1038/ni.2679.PubMedCentralPubMedCrossRefGoogle Scholar
  110. Schieferdecker, H. L., Ullrich, R., Hirseland, H., & Zeitz, M. (1992). T cell differentiation antigens on lymphocytes in the human intestinal lamina propria. Journal of Immunology, 149(8), 2816–2822.Google Scholar
  111. Schlitzer, A., McGovern, N., Teo, P., Zelante, T., Atarashi, K., Low, D., et al. (2013). IRF4 transcription factor-dependent CD11b+ dendritic cells in human and mouse control mucosal IL-17 cytokine responses. Immunity, 38(5), 970–983. doi:10.1016/j.immuni.2013.04.011.PubMedCentralPubMedCrossRefGoogle Scholar
  112. Schulz, O., & Pabst, O. (2013). Antigen sampling in the small intestine. Trends in Immunology, 34(4), 155–161. doi:10.1016/j.it.2012.09.006.PubMedCrossRefGoogle Scholar
  113. Schulz, O., Jaensson, E., Persson, E. K., Liu, X., Worbs, T., Agace, W. W., et al. (2009). Intestinal CD103+, but not CX3CR1+, antigen sampling cells migrate in lymph and serve classical dendritic cell functions. The Journal of Experimental Medicine, 206(13), 3101–3114. doi:10.1084/jem.20091925.PubMedCentralPubMedCrossRefGoogle Scholar
  114. Schwartz, R. H. (1989). Acquisition of immunologic self-tolerance. Cell, 57(7), 1073–1081.PubMedCrossRefGoogle Scholar
  115. Scott, C. L., Aumeunier, A. M., & Mowat, A. M. (2011). Intestinal CD103+ dendritic cells: Master regulators of tolerance? Trends in Immunology, 32(9), 412–419. doi:10.1016/j.it.2011.06.003.PubMedCrossRefGoogle Scholar
  116. Shan, M., Gentile, M., Yeiser, J. R., Walland, A. C., Bornstein, V. U., Chen, K., et al. (2013). Mucus enhances gut homeostasis and oral tolerance by delivering immunoregulatory signals. Science, 342(6157), 447–453. doi:10.1126/science.1237910.PubMedCentralPubMedCrossRefGoogle Scholar
  117. Sharma, M. D., Baban, B., Chandler, P., Hou, D. Y., Singh, N., Yagita, H., et al. (2007). Plasmacytoid dendritic cells from mouse tumor-draining lymph nodes directly activate mature Tregs via indoleamine 2,3-dioxygenase. The Journal of Clinical Investigation, 117(9), 2570–2582. doi:10.1172/JCI31911.PubMedCentralPubMedCrossRefGoogle Scholar
  118. Song, J., Clagett-Dame, M., Peterson, R. E., Hahn, M. E., Westler, W. M., Sicinski, R. R., et al. (2002). A ligand for the aryl hydrocarbon receptor isolated from lung. Proceedings of the National Academy of Sciences of the United States of America, 99(23), 14694–14699. doi:10.1073/pnas.232562899.PubMedCentralPubMedCrossRefGoogle Scholar
  119. Spahn, T. W., Fontana, A., Faria, A. M., Slavin, A. J., Eugster, H. P., Zhang, X., et al. (2001). Induction of oral tolerance to cellular immune responses in the absence of Peyer’s patches. European Journal of Immunology, 31(4), 1278–1287.PubMedCrossRefGoogle Scholar
  120. Spahn, T. W., Weiner, H. L., Rennert, P. D., Lugering, N., Fontana, A., Domschke, W., et al. (2002). Mesenteric lymph nodes are critical for the induction of high-dose oral tolerance in the absence of Peyer’s patches. European Journal of Immunology, 32(4), 1109–1113.PubMedCrossRefGoogle Scholar
  121. Starr, T. K., Jameson, S. C., & Hogquist, K. A. (2003). Positive and negative selection of T cells. Annual Review of Immunology, 21, 139–176. doi:10.1146/annurev.immunol.21.120601.141107.PubMedCrossRefGoogle Scholar
  122. Stockinger, B., Di Meglio, P., Gialitakis, M., & Duarte, J. H. (2014). The aryl hydrocarbon receptor: Multitasking in the immune system. Annual Review of Immunology, 32, 403–432. doi:10.1146/annurev-immunol-032713-120245.PubMedCrossRefGoogle Scholar
  123. Sugimoto, N., Oida, T., Hirota, K., Nakamura, K., Nomura, T., Uchiyama, T., et al. (2006). Foxp3-dependent and -independent molecules specific for CD25+ CD4+ natural regulatory T cells revealed by DNA microarray analysis. International Immunology, 18(8), 1197–1209. doi:10.1093/intimm/dxl060.PubMedCrossRefGoogle Scholar
  124. Sun, C. M., Hall, J. A., Blank, R. B., Bouladoux, N., Oukka, M., Mora, J. R., et al. (2007). Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid. The Journal of Experimental Medicine, 204(8), 1775–1785. doi:10.1084/jem.20070602.PubMedCentralPubMedCrossRefGoogle Scholar
  125. Sundrud, M. S., Koralov, S. B., Feuerer, M., Calado, D. P., Kozhaya, A. E., Rhule-Smith, A., et al. (2009). Halofuginone inhibits TH17 cell differentiation by activating the amino acid starvation response. Science, 324(5932), 1334–1338. doi:10.1126/science.1172638.PubMedCentralPubMedCrossRefGoogle Scholar
  126. Szatmari, I., Pap, A., Ruhl, R., Ma, J. X., Illarionov, P. A., Besra, G. S., et al. (2006). PPARgamma controls CD1d expression by turning on retinoic acid synthesis in developing human dendritic cells. The Journal of Experimental Medicine, 203(10), 2351–2362. doi:10.1084/jem.20060141.PubMedCentralPubMedCrossRefGoogle Scholar
  127. Thornton, A. M., Korty, P. E., Tran, D. Q., Wohlfert, E. A., Murray, P. E., Belkaid, Y., et al. (2010). Expression of Helios, an Ikaros transcription factor family member, differentiates thymic-derived from peripherally induced Foxp3+ T regulatory cells. Journal of Immunology, 184(7), 3433–3441. doi:10.4049/jimmunol.0904028.CrossRefGoogle Scholar
  128. Travis, M. A., Reizis, B., Melton, A. C., Masteller, E., Tang, Q., Proctor, J. M., et al. (2007). Loss of integrin alpha(v)beta8 on dendritic cells causes autoimmunity and colitis in mice. Nature, 449(7160), 361–365. doi:10.1038/nature06110.PubMedCentralPubMedCrossRefGoogle Scholar
  129. Tsitoura, D. C., DeKruyff, R. H., Lamb, J. R., & Umetsu, D. T. (1999). Intranasal exposure to protein antigen induces immunological tolerance mediated by functionally disabled CD4+ T cells. Journal of Immunology, 163(5), 2592–2600.Google Scholar
  130. Varol, C., Vallon-Eberhard, A., Elinav, E., Aychek, T., Shapira, Y., Luche, H., et al. (2009). Intestinal lamina propria dendritic cell subsets have different origin and functions. Immunity, 31(3), 502–512.PubMedCrossRefGoogle Scholar
  131. Veldhoen, M., Hocking, R. J., Atkins, C. J., Locksley, R. M., & Stockinger, B. (2006). TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity, 24(2), 179–189. doi:10.1016/j.immuni.2006.01.001.PubMedCrossRefGoogle Scholar
  132. Verhasselt, V. (2010). Oral tolerance in neonates: From basics to potential prevention of allergic disease. Mucosal Immunology, 3(4), 326–333. doi:10.1038/mi.2010.25.PubMedCrossRefGoogle Scholar
  133. Vignali, D. A., Collison, L. W., & Workman, C. J. (2008). How regulatory T cells work. Nature Reviews Immunology, 8(7), 523–532. doi:10.1038/nri2343.PubMedCentralPubMedCrossRefGoogle Scholar
  134. Viney, J. L., Mowat, A. M., O’Malley, J. M., Williamson, E., & Fanger, N. A. (1998). Expanding dendritic cells in vivo enhances the induction of oral tolerance. Journal of Immunology, 160(12), 5815–5825.Google Scholar
  135. Wakim, L. M., & Bevan, M. J. (2011). Cross-dressed dendritic cells drive memory CD8+ T-cell activation after viral infection. Nature, 471(7340), 629–632. doi:10.1038/nature09863.PubMedCentralPubMedCrossRefGoogle Scholar
  136. Weiner, H. L., da Cunha, A. P., Quintana, F., & Wu, H. (2011). Oral tolerance. Immunological Reviews, 241(1), 241–259. doi:10.1111/j.1600-065X.2011.01017.x.PubMedCentralPubMedCrossRefGoogle Scholar
  137. Weiss, J. M., Bilate, A. M., Gobert, M., Ding, Y., Curotto de Lafaille, M. A., Parkhurst, C. N., et al. (2012). Neuropilin 1 is expressed on thymus-derived natural regulatory T cells, but not mucosa-generated induced Foxp3+ T reg cells. The Journal of Experimental Medicine, 209(10):1723–1742, S1721. doi:10.1084/jem.20120914.Google Scholar
  138. Welty, N. E., Staley, C., Ghilardi, N., Sadowsky, M. J., Igyarto, B. Z., & Kaplan, D. H. (2013). Intestinal lamina propria dendritic cells maintain T cell homeostasis but do not affect commensalism. The Journal of Experimental Medicine, 210(10), 2011–2024. doi:10.1084/jem.20130728.PubMedCentralPubMedCrossRefGoogle Scholar
  139. Wildin, R. S., Ramsdell, F., Peake, J., Faravelli, F., Casanova, J. L., Buist, N., et al. (2001). X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nature Genetics, 27(1), 18–20. doi:10.1038/83707.PubMedCrossRefGoogle Scholar
  140. Wohlfert, E. A., Grainger, J. R., Bouladoux, N., Konkel, J. E., Oldenhove, G., Ribeiro, C. H., et al. (2011). GATA3 controls Foxp3(+) regulatory T cell fate during inflammation in mice. The Journal of Clinical Investigation, 121(11), 4503–4515. doi:10.1172/JCI57456.PubMedCentralPubMedCrossRefGoogle Scholar
  141. Worbs, T., Bode, U., Yan, S., Hoffmann, M. W., Hintzen, G., Bernhardt, G., et al. (2006). Oral tolerance originates in the intestinal immune system and relies on antigen carriage by dendritic cells. The Journal of Experimental Medicine, 203(3), 519–527.PubMedCentralPubMedCrossRefGoogle Scholar
  142. Worthington, J. J., Czajkowska, B. I., Melton, A. C., & Travis, M. A. (2011). Intestinal dendritic cells specialize to activate transforming growth factor-beta and induce Foxp3+ regulatory T cells via integrin alphavbeta8. Gastroenterology, 141(5), 1802–1812. doi:10.1053/j.gastro.2011.06.057.PubMedCentralPubMedCrossRefGoogle Scholar
  143. Yadav, M., Louvet, C., Davini, D., Gardner, J. M., Martinez-Llordella, M., Bailey-Bucktrout, S., et al. (2012). Neuropilin-1 distinguishes natural and inducible regulatory T cells among regulatory T cell subsets in vivo. The Journal of Experimental Medicine, 209(10):1713–1722, S1711–1719. doi:10.1084/jem.20120822.Google Scholar
  144. Yokota, A., Takeuchi, H., Maeda, N., Ohoka, Y., Kato, C., Song, S. Y., et al. (2009). GM-CSF and IL-4 synergistically trigger dendritic cells to acquire retinoic acid-producing capacity. International Immunology, 21(4), 361–377. doi:10.1093/intimm/dxp003.PubMedCentralPubMedCrossRefGoogle Scholar
  145. Zelante, T., Iannitti, R. G., Cunha, C., De Luca, A., Giovannini, G., Pieraccini, G., et al. (2013). Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity, 39(2), 372–385. doi:10.1016/j.immuni.2013.08.003.PubMedCrossRefGoogle Scholar
  146. Zhang, X., Izikson, L., Liu, L., & Weiner, H. L. (2001). Activation of CD25(+)CD4(+) regulatory T cells by oral antigen administration. Journal of Immunology, 167(8), 4245–4253.CrossRefGoogle Scholar
  147. Zheng, Y., Chaudhry, A., Kas, A., deRoos, P., Kim, J. M., Chu, T. T., et al. (2009). Regulatory T-cell suppressor program co-opts transcription factor IRF4 to control T(H)2 responses. Nature, 458(7236), 351–356. doi:10.1038/nature07674.PubMedCentralPubMedCrossRefGoogle Scholar
  148. Zheng, Y., Josefowicz, S., Chaudhry, A., Peng, X. P., Forbush, K., & Rudensky, A. Y. (2010). Role of conserved non-coding DNA elements in the Foxp3 gene in regulatory T-cell fate. Nature, 463(7282), 808–812. doi:10.1038/nature08750.PubMedCentralPubMedCrossRefGoogle Scholar
  149. Zhou, Y., Kawasaki, H., Hsu, S. C., Lee, R. T., Yao, X., Plunkett, B., et al. (2010). Oral tolerance to food-induced systemic anaphylaxis mediated by the C-type lectin SIGNR1. Nature Medicine, 16(10), 1128–1133. doi:10.1038/nm.2201.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Academy of Immunology and Microbiology (AIM)Institute for Basic Science (IBS)PohangRepublic of Korea
  2. 2.Department of Integrative Biosciences and BiotechnologyPohang University of Science and Technology (POSTECH)PohangRepublic of Korea
  3. 3.Division of Developmental ImmunologyLa Jolla institute for Allergy and ImmunologyLa JollaUSA

Personalised recommendations