Advertisement

Mechanisms of Memory T Cell Activation and Effective Immunity

  • Grégoire LauvauEmail author
  • Saïdi M’Homa Soudja
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 850)

Abstract

Effective immunization induces the development of populations of robust effector lymphocytes specific for the immunizing antigens. Amongst them are cytotoxic/CD8+T lymphocytes, which few will further differentiate into long-lived memory cells persisting in the host and exhibiting improved functional characteristics. The current model is that such memory cells can confer rapid host protection upon cognate antigen-mediated activation and direct killing of infected cells. In this chapter, we discuss work from our group and others that highlight the contribution of inflammatory cytokines to memory CD8+ T cell activation and of cytolysis-independent mechanisms of host protection.

Keywords

Memory T lymphocytes Monocytes Inflammation Vaccination Protective immunity 

References

  1. Aoshi, T., Zinselmeyer, B. H., Konjufca, V., Lynch, J. N., Zhang, X., Koide, Y., & Miller, M. J. (2008). Bacterial entry to the splenic white pulp initiates antigen presentation to CD8+ T cells. Immunity, 29, 476–486.CrossRefPubMedGoogle Scholar
  2. Ariotti, S., Hogenbirk, M. A., Dijkgraaf, F. E., Visser, L. L., Hoekstra, M. E., Song, J. Y., Jacobs, H., Haanen, J. B., & Schumacher, T. N. (2014). T cell memory. Skin-resident memory CD8(+) T cells trigger a state of tissue-wide pathogen alert. Science, 346, 101–105.CrossRefPubMedGoogle Scholar
  3. Auffray, C., Sieweke, M. H., & Geissmann, F. (2009). Blood monocytes: Development, heterogeneity, and relationship with dendritic cells. Annual Review of Immunology, 27, 669–692.CrossRefPubMedGoogle Scholar
  4. Badovinac, V. P., & Harty, J. T. (2000). Adaptive immunity and enhanced CD8+ T cell response to Listeria monocytogenes in the absence of perforin and IFN-gamma. Journal of Immunology, 164, 6444–6452.CrossRefGoogle Scholar
  5. Bajenoff, M., Narni-Mancinelli, E., Brau, F., & Lauvau, G. (2010). Visualizing early splenic memory CD8 + T cells reactivation against intracellular bacteria in the mouse. PLoS One, 5, e11524.PubMedCentralCrossRefPubMedGoogle Scholar
  6. Berg, R. E., Crossley, E., Murray, S., & Forman, J. (2003). Memory CD8+ T cells provide innate immune protection against listeria monocytogenes in the absence of cognate antigen. The Journal of Experimental Medicine, 198, 1583–1593.PubMedCentralCrossRefPubMedGoogle Scholar
  7. Chu, T., Tyznik, A. J., Roepke, S., Berkley, A. M., Woodward-Davis, A., Pattacini, L., Bevan, M. J., Zehn, D., & Prlic, M. (2013). Bystander-activated memory CD8 T cells control early pathogen load in an innate-like, NKG2D-dependent manner. Cell Reports, 3, 701–708.PubMedCentralCrossRefPubMedGoogle Scholar
  8. Cook, D. N., Smithies, O., Strieter, R. M., Frelinger, J. A., & Serody, J. S. (1999). CD8+ T cells are a biologically relevant source of macrophage inflammatory protein-1 alpha in vivo. Journal of Immunology, 162, 5423–5428.Google Scholar
  9. Cui, W., & Kaech, S. M. (2010). Generation of effector CD8+ T cells and their conversion to memory T cells. Immunological Reviews, 236, 151–166.PubMedCentralCrossRefPubMedGoogle Scholar
  10. Dorner, B. G., Scheffold, A., Rolph, M. S., Huser, M. B., Kaufmann, S. H., Radbruch, A., Flesch, I. E., & Kroczek, R. A. (2002). MIP-1alpha, MIP-1beta, RANTES, and ATAC/lymphotactin function together with IFN-gamma as type 1 cytokines. Proceedings of the National Academy of Sciences of the United States of America, 99, 6181–6186.PubMedCentralCrossRefPubMedGoogle Scholar
  11. Edelson, B. T., Bradstreet, T. R., Hildner, K., Carrero, J. A., Frederick, K. E., Kc, W., Belizaire, R., Aoshi, T., Schreiber, R. D., Miller, M. J., et al. (2011). CD8alpha(+) Dendritic Cells Are an Obligate Cellular Entry Point for Productive Infection by Listeria monocytogenes. Immunity, 35, 236–248.PubMedCentralCrossRefPubMedGoogle Scholar
  12. Gebhardt, T., Wakim, L. M., Eidsmo, L., Reading, P. C., Heath, W. R., & Carbone, F. R. (2009). Memory T cells in nonlymphoid tissue that provide enhanced local immunity during infection with herpes simplex virus. Nature Immunology, 10, 524–530.CrossRefPubMedGoogle Scholar
  13. Harty, J. T., & Badovinac, V. P. (2008). Shaping and reshaping CD8 + T-cell memory. Nature Reviews Immunology, 8, 107–119.CrossRefPubMedGoogle Scholar
  14. Harty, J. T., & Bevan, M. J. (1995). Specific immunity to Listeria monocytogenes in the absence of IFN gamma. Immunity, 3, 109–117.CrossRefPubMedGoogle Scholar
  15. Harty, J. T., Tvinnereim, A. R., & White, D. W. (2000). CD8 + T cell effector mechanisms in resistance to infection. Annual Review of Immunology, 18, 275–308.CrossRefPubMedGoogle Scholar
  16. Hu, X., & Ivashkiv, L. B. (2009). Cross-regulation of signaling pathways by interferon-gamma: Implications for immune responses and autoimmune diseases. Immunity, 31, 539–550.PubMedCentralCrossRefPubMedGoogle Scholar
  17. Iijima, N., & Iwasaki, A. (2014). T cell memory. A local macrophage chemokine network sustains protective tissue-resident memory CD4 T cells. Science, 346, 93–98.PubMedCentralCrossRefPubMedGoogle Scholar
  18. Kastenmuller, W., Brandes, M., Wang, Z., Herz, J., Egen, J. G., & Germain, R. N. (2013). Peripheral prepositioning and local CXCL9 chemokine-mediated guidance orchestrate rapid memory CD8(+) T Cell responses in the lymph node. Immunity, 38, 502–513.PubMedCentralCrossRefPubMedGoogle Scholar
  19. Kim, B. H., Shenoy, A. R., Kumar, P., Das, R., Tiwari, S., & MacMicking, J. D. (2011). A family of IFN-gamma-inducible 65-kD GTPases protects against bacterial infection. Science, 332, 717–721.CrossRefPubMedGoogle Scholar
  20. Kupz, A., Guarda, G., Gebhardt, T., Sander, L. E., Short, K. R., Diavatopoulos, D. A., Wijburg, O. L., Cao, H., Waithman, J. C., Chen, W., et al. (2012). NLRC4 inflammasomes in dendritic cells regulate noncognate effector function by memory CD8(+) T cells. Natural Immunology, 13, 115-117.CrossRefGoogle Scholar
  21. McKinstry, K. K., Strutt, T. M., & Swain, S. L. (2010). The potential of CD4 T-cell memory. Immunology, 130, 1–9.PubMedCentralCrossRefPubMedGoogle Scholar
  22. Narni-Mancinelli, E., Campisi, L., Bassand, D., Cazareth, J., Gounon, P., Glaichenhaus, N., & Lauvau, G. (2007). Memory CD8+ T cells mediate antibacterial immunity via CCL3 activation of TNF/ROI + phagocytes. The Journal of Experimental Medicine, 204, 2075–2087.PubMedCentralCrossRefPubMedGoogle Scholar
  23. Narni-Mancinelli, E., Soudja, S. M., Crozat, K., Dalod, M., Gounon, P., Geissmann, F., & Lauvau, G. (2011). Inflammatory monocytes and neutrophils are licensed to kill during memory responses in vivo. PLoS Pathogens, 7(12):e1002457. Google Scholar
  24. Neighbors, M., Xu, X., Barrat, F. J., Ruuls, S. R., Churakova, T., Debets, R., Bazan, J. F., Kastelein, R. A., Abrams, J. S., & O’Garra, A. (2001). A critical role for interleukin 18 in primary and memory effector responses to listeria monocytogenes that extends beyond its effects on Interferon gamma production. The Journal of Experimental Medicine, 194, 343–354.PubMedCentralCrossRefPubMedGoogle Scholar
  25. Neuenhahn, M., Kerksiek, K. M., Nauerth, M., Suhre, M. H., Schiemann, M., Gebhardt, F. E., Stemberger, C., Panthel, K., Schroder, S., Chakraborty, T., et al. (2006). CD8alpha + dendritic cells are required for efficient entry of Listeria monocytogenes into the spleen. Immunity, 25, 619–630.CrossRefPubMedGoogle Scholar
  26. Sallusto, F., Mackay, C. R., & Lanzavecchia, A. (2000). The role of chemokine receptors in primary, effector, and memory immune responses. Annual Review of Immunology, 18, 593–620.CrossRefPubMedGoogle Scholar
  27. Schenkel, J. M., Fraser, K. A., Vezys, V., & Masopust, D. (2013). Sensing and alarm function of resident memory CD8(+) T cells. Nature Immunology, 14, 509–513.PubMedCentralCrossRefPubMedGoogle Scholar
  28. Schenkel, J. M., Fraser, K. A., Beura, L. K., Pauken, K. E., Vezys, V., & Masopust, D. (2014). T cell memory. Resident memory CD8 T cells trigger protective innate and adaptive immune responses. Science, 346, 98–101.PubMedCentralCrossRefPubMedGoogle Scholar
  29. Serbina, N. V., & Pamer, E. G. (2006). Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2. Nature Immunology, 7, 311–317.CrossRefPubMedGoogle Scholar
  30. Soudja, S. M., Ruiz, A. L., Marie, J. C., & Lauvau, G. (2012). Inflammatory Monocytes Activate Memory CD8(+) T and Innate NK Lymphocytes Independent of Cognate Antigen during Microbial Pathogen Invasion. Immunity, 37, 549–562.PubMedCentralCrossRefPubMedGoogle Scholar
  31. Sung, J. H., Zhang, H., Moseman, E. A., Alvarez, D., Iannacone, M., Henrickson, S. E., de la Torre, J. C., Groom, J. R., Luster, A. D., & von Andrian, U. H. (2012). Chemokine guidance of central memory T cells is critical for antiviral recall responses in lymph nodes. Cell, 150, 1249–1263.PubMedCentralCrossRefPubMedGoogle Scholar
  32. White, D. W., Badovinac, V. P., Fan, X., & Harty, J. T. (2000a). Adaptive immunity against Listeria monocytogenes in the absence of type I tumor necrosis factor receptor p 55. Infection and Immunity, 68, 4470–4476.PubMedCentralCrossRefPubMedGoogle Scholar
  33. White, D. W., Badovinac, V. P., Kollias, G., & Harty, J. T. (2000b). Cutting edge: Antilisterial activity of CD8+ T cells derived from TNF-deficient and TNF/perforin double-deficient mice. Journal of Immunology, 165, 5–9.CrossRefGoogle Scholar
  34. Wirth, T. C., Martin, M. D., Starbeck-Miller, G., Harty, J. T., & Badovinac, V. P. (2011). Secondary CD8+ T-cell responses are controlled by systemic inflammation. European Journal of Immunology, 41, 1321–1333.PubMedCentralCrossRefPubMedGoogle Scholar
  35. Yamamoto, M., Okuyama, M., Ma, J. S., Kimura, T., Kamiyama, N., Saiga, H., Ohshima, J., Sasai, M., Kayama, H., Okamoto, T., et al. (2012). A cluster of interferon-gamma-inducible p65 GTPases plays a critical role in host defense against Toxoplasma gondii. Immunity, 37, 302–313.CrossRefPubMedGoogle Scholar
  36. Zammit, D. J., Cauley, L. S., Pham, Q. M., & Lefrancois, L. (2005). Dendritic cells maximize the memory CD8 T cell response to infection. Immunity, 22, 561–570.PubMedCentralCrossRefPubMedGoogle Scholar
  37. Zhang, X., Sun, S., Hwang, I., Tough, D. F., & Sprent, J. (1998). Potent and selective stimulation of memory-phenotype CD8+ T cells in vivo by IL-15. Immunity, 8, 591–599.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Microbiology and ImmunologyAlbert Einstein College of MedicineBronxUSA

Personalised recommendations