Skip to main content

Functional Diversity of Human Dendritic Cells

  • Conference paper
  • First Online:
Crossroads Between Innate and Adaptive Immunity V

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 850))

Abstract

At the crossroad between innate and adaptive immunity are the dendritic Cells (DCs), a “novel cell type.” discovered in 1973 by Ralph Steinman. Although not entirely appreciated at first, it is clear that they play a critical role as specialized antigen-presenting cells and essential mediators in shaping immune reactivity and tolerance. Dendritic cells are now recognized as a heterogeneous group of cells in terms of cell-surface markers, anatomic location, and function adapted to protect against an array of pathogens and conditions. Importantly, these subsets are also unique to each species. While significant progress has been made on the identification and function of mouse DC subsets, much less is known about human cells. Here we review the fascinating biology of human skin DCs and describe tolerogenic principles that are critical in maintaining immune homeostasis and for controlling inflammation, as well as mechanisms that are fundamental to confer immunity. We surmise that these principles could be applied to DCs across organs, and could be harnessed for the treatment of various human autoimmune, inflammatory diseases, as well as cancer. Importantly, to leverage the relevance of basic research to the clinical setting, it is first necessary to determine the functional homology between mouse and human DCs. We discuss practical steps towards this aim.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Artyomov, M. N., et al. (2015). Modular expression analysis reveals functional conservation between human Langerhans cells and mouse cross-priming dendritic cells. The Journal of Experimental Medicine, 212(5), 743–757.

    Google Scholar 

  • Babbitt, B. P., Allen, P. M., Matsueda, G., Haber, E., & Unanue, E. R. (1985). Binding of immunogenic peptides to Ia histocompatibility molecules. Nature, 317, 359–361.

    Article  CAS  PubMed  Google Scholar 

  • Bachem, A., Guttler, S., Hartung, E., Ebstein, F., Schaefer, M., Tannert, A., Salama, A., Movassaghi, K., Opitz, C., Mages, H. W., Henn, V., Kloetzel, P. M., Gurka, S., & Kroczek, R. A. (2010). Superior antigen cross-presentation and XCR1 expression define human CD11c+CD141+ cells as homologues of mouse CD8+ dendritic cells. The Journal of Experimental Medicine, 207, 1273–1281.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Banchereau, J., & Steinman, R. M. (1998). Dendritic cells and the control of immunity. Nature, 392, 245–252.

    Article  CAS  PubMed  Google Scholar 

  • Banchereau, J., Klechevsky, E., Schmitt, N., Morita, R., Palucka, K., & Ueno, H. (2009). Harnessing human dendritic cell subsets to design novel vaccines. Annals of the New York Academy of Sciences, 1174, 24–32.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Banchereau, J., Thompson-Snipes, L., Zurawski, S., Blanck, J. P., Cao, Y., Clayton, S., Gorvel, J. P., Zurawski, G., & Klechevsky, E. (2012a). The differential production of cytokines by human Langerhans cells and dermal CD14(+) DCs controls CTL priming. Blood, 119, 5742–5749.

    Article  PubMed Central  PubMed  Google Scholar 

  • Banchereau, J., Zurawski, S., Thompson-Snipes, L., Blanck, J. P., Clayton, S., Munk, A., Cao, Y., Wang, Z., Khandelwal, S., Hu, J., McCoy, W. H. t., Palucka, K. A., Reiter, Y., Fremont, D. H., Zurawski, G., Colonna, M., Shaw, A. S., & Klechevsky, E. (2012b). Immunoglobulin-like transcript receptors on human dermal CD14+ dendritic cells act as a CD8-antagonist to control cytotoxic T cell priming. Proceedings of the National Academy of Sciences of the United States of America, 109, 18885–18890.

    Google Scholar 

  • Caux, C., Vanbervliet, B., Massacrier, C., Dezutter-Dambuyant, C., de Saint-Vis, B., Jacquet, C., Yoneda, K., Imamura, S., Schmitt, D., & Banchereau, J. (1996). CD34 + hematopoietic progenitors from human cord blood differentiate along two independent dendritic cell pathways in response to GM-CSF+TNF alpha. The Journal of Experimental Medicine, 184, 695–706.

    Article  CAS  PubMed  Google Scholar 

  • Caux, C., Massacrier, C., Vanbervliet, B., Dubois, B., Durand, I., Cella, M., Lanzavecchia, A., & Banchereau, J. (1997). CD34 + hematopoietic progenitors from human cord blood differentiate along two independent dendritic cell pathways in response to granulocyte-macrophage colony-stimulating factor plus tumor necrosis factor alpha: II. Functional analysis. Blood, 90, 1458–1470.

    CAS  PubMed  Google Scholar 

  • Chu, C. C., Ali, N., Karagiannis, P., Di Meglio, P., Skowera, A., Napolitano, L., Barinaga, G., Grys, K., Sharif-Paghaleh, E., Karagiannis, S. N., Peakman, M., Lombardi, G., & Nestle, F. O. (2012). Resident CD141 (BDCA3)+ dendritic cells in human skin produce IL-10 and induce regulatory T cells that suppress skin inflammation. The Journal of Experimental Medicine, 209, 935–945.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cohn, L., Chatterjee, B., Esselborn, F., Smed-Sorensen, A., Nakamura, N., Chalouni, C., Lee, B. C., Vandlen, R., Keler, T., Lauer, P., Brockstedt, D., Mellman, I., & Delamarre, L. (2013). Antigen delivery to early endosomes eliminates the superiority of human blood BDCA3+ dendritic cells at cross presentation. The Journal of Experimental Medicine, 210, 1049–1063.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Crozat, K., Guiton, R., Guilliams, M., Henri, S., Baranek, T., Schwartz-Cornil, I., Malissen, B., & Dalod, M. (2010). Comparative genomics as a tool to reveal functional equivalences between human and mouse dendritic cell subsets. Immunological Reviews, 234, 177–198.

    Article  CAS  PubMed  Google Scholar 

  • de Jong, A., Pena-Cruz, V., Cheng, T. Y., Clark, R. A., Van Rhijn, I., & Moody, D. B. (2010). CD1a-autoreactive T cells are a normal component of the human alphabeta T cell repertoire. Nature Immunology, 11, 1102–1109.

    Article  PubMed Central  PubMed  Google Scholar 

  • del Rio, M. L., Bernhardt, G., Rodriguez-Barbosa, J. I., & Forster, R. (2010). Development and functional specialization of CD103+ dendritic cells. Immunological Reviews, 234, 268–281.

    Article  PubMed  Google Scholar 

  • Dresch, C., Ackermann, M., Vogt, B., de Andrade Pereira, B., Shortman, K., & Fraefel, C. (2011). Thymic but not splenic CD8(+) DCs can efficiently cross-prime T cells in the absence of licensing factors. European Journal of Immunology, 41, 2544–2555.

    Article  CAS  PubMed  Google Scholar 

  • Dudziak, D., Kamphorst, A. O., Heidkamp, G. F., Buchholz, V. R., Trumpfheller, C., Yamazaki, S., Cheong, C., Liu, K., Lee, H. W., Park, C. G., Steinman, R. M., & Nussenzweig, M. C. (2007). Differential antigen processing by dendritic cell subsets in vivo. Science, 315, 107–111.

    Article  CAS  PubMed  Google Scholar 

  • Dullaers, M., Li, D., Xue, Y., Ni, L., Gayet, I., Morita, R., Ueno, H., Palucka, K. A., Banchereau, J., & Oh, S. (2009). A T cell-dependent mechanism for the induction of human mucosal homing immunoglobulin A-secreting plasmablasts. Immunity, 30, 120–129.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Flacher, V., Bouschbacher, M., Verronese, E., Massacrier, C., Sisirak, V., Berthier-Vergnes, O., de Saint-Vis, B., Caux, C., Dezutter-Dambuyant, C., Lebecque, S., & Valladeau, J. (2006). Human Langerhans cells express a specific TLR profile and differentially respond to viruses and Gram-positive bacteria. The Journal of Immunology, 177, 7959–7967.

    Article  CAS  PubMed  Google Scholar 

  • Fujita, H., Nograles, K. E., Kikuchi, T., Gonzalez, J., Carucci, J. A., & Krueger, J. G. (2009). Human Langerhans cells induce distinct IL-22-producing CD4+ T cells lacking IL-17 production. Proceedings of the National Academy of Sciences of the United States of America, 106, 21795–21800.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gao, Y., Nish, S. A., Jiang, R., Hou, L., Licona-Limon, P., Weinstein, J. S., Zhao, H., & Medzhitov, R. (2013). Control of T helper 2 responses by transcription factor IRF4-dependent dendritic cells. Immunity, 39, 722–732.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ginhoux, F., Tacke, F., Angeli, V., Bogunovic, M., Loubeau, M., Dai, X. M., Stanley, E. R., Randolph, G. J., & Merad, M. (2006). Langerhans cells arise from monocytes in vivo. Nature Immunology, 7, 265–273.

    Article  CAS  PubMed  Google Scholar 

  • Ginhoux, F., Collin, M. P., Bogunovic, M., Abel, M., Leboeuf, M., Helft, J., Ochando, J., Kissenpfennig, A., Malissen, B., Grisotto, M., Snoeck, H., Randolph, G., & Merad, M. (2007). Blood-derived dermal langerin + dendritic cells survey the skin in the steady state. The Journal of Experimental Medicine, 204, 3133–3146.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Haniffa, M., Shin, A., Bigley, V., McGovern, N., Teo, P., See, P., Wasan, P. S., Wang, X. N., Malinarich, F., Malleret, B., Larbi, A., Tan, P., Zhao, H., Poidinger, M., Pagan, S., Cookson, S., Dickinson, R., Dimmick, I., Jarrett, R. F., Renia, L., Tam, J., Song, C., Connolly, J., Chan, J. K., Gehring, A., Bertoletti, A., Collin, M., & Ginhoux, F. (2012). Human tissues contain CD141hi cross-presenting dendritic cells with functional homology to mouse CD103+ nonlymphoid dendritic cells. Immunity, 37, 60–73.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hildner, K., Edelson, B. T., Purtha, W. E., Diamond, M., Matsushita, H., Kohyama, M., Calderon, B., Schraml, B. U., Unanue, E. R., Diamond, M. S., Schreiber, R. D., Murphy, T. L., & Murphy, K. M. (2008). Batf3 deficiency reveals a critical role for CD8alpha+ dendritic cells in cytotoxic T cell immunity. Science, 322, 1097–1100.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hochheiser, K., Heuser, C., Krause, T. A., Teteris, S., Ilias, A., Weisheit, C., Hoss, F., Tittel, A. P., Knolle, P. A., Panzer, U., Engel, D. R., Tharaux, P. L., & Kurts, C. (2013). Exclusive CX3CR1 dependence of kidney DCs impacts glomerulonephritis progression. Journal of Clinical Investigation, 123, 4242–4254.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Igyarto, B. Z., Jenison, M. C., Dudda, J. C., Roers, A., Muller, W., Koni, P. A., Campbell, D. J., Shlomchik, M. J., & Kaplan, D. H. (2009). Langerhans cells suppress contact hypersensitivity responses via cognate CD4 interaction and langerhans cell-derived IL-10. Journal of Immunology, 183, 5085–5093.

    Article  CAS  Google Scholar 

  • Jongbloed, S. L., Kassianos, A. J., McDonald, K. J., Clark, G. J., Ju, X., Angel, C. E., Chen, C. J., Dunbar, P. R., Wadley, R. B., Jeet, V., Vulink, A. J., Hart, D. N., & Radford, K. J. (2010). Human CD141+ (BDCA-3)+ dendritic cells (DCs) represent a unique myeloid DC subset that cross-presents necrotic cell antigens. The Journal of Experimental Medicine, 207, 1247–1260.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Klechevsky, E., & Banchereau, J. (2013). Human dendritic cells subsets as targets and vectors for therapy. Annals of the New York Academy of Sciences, 1284, 24–30.

    Article  CAS  PubMed  Google Scholar 

  • Klechevsky, E., Morita, R., Liu, M., Cao, Y., Coquery, S., Thompson-Snipes, L., Briere, F., Chaussabel, D., Zurawski, G., Palucka, A. K., Reiter, Y., Banchereau, J., & Ueno, H. (2008). Functional specializations of human epidermal Langerhans cells and CD14+ dermal dendritic cells. Immunity, 29, 497–510.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Klechevsky, E., Liu, M., Morita, R., Banchereau, R., Thompson-Snipes, L., Palucka, A. K., Ueno, H., & Banchereau, J. (2009). Understanding human myeloid dendritic cell subsets for the rational design of novel vaccines. Human Immunology, 70, 281–288.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kumamoto, Y., Linehan, M., Weinstein, J. S., Laidlaw, B. J., Craft, J. E., & Iwasaki, A. (2013). CD301b(+) Dermal Dendritic Cells Drive T Helper 2 Cell-Mediated Immunity. Immunity, 39, 733–743.

    Article  CAS  PubMed  Google Scholar 

  • Langerhans, P. (1868). Uber die nerven der menschlichen haut. Archives of Pathological Anatomy, 44, 325–337.

    Article  Google Scholar 

  • Lenz, A., Heine, M., Schuler, G., & Romani, N. (1993). Human and murine dermis contain dendritic cells. Isolation by means of a novel method and phenotypical and functional characterization. Journal of Clinical Investigation, 92, 2587–2596.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mathers, A. R., Janelsins, B. M., Rubin, J. P., Tkacheva, O. A., Shufesky, W. J., Watkins, S. C., Morelli, A. E., & Larregina, A. T. (2009). Differential capability of human cutaneous dendritic cell subsets to initiate Th17 responses. Journal of Immunology, 182, 921–933.

    Article  CAS  Google Scholar 

  • Meredith, M. M., Liu, K., Darrasse-Jeze, G., Kamphorst, A. O., Schreiber, H. A., Guermonprez, P., Idoyaga, J., Cheong, C., Yao, K. H., Niec, R. E., & Nussenzweig, M.C. (2012). Expression of the zinc finger transcription factor zDC (Zbtb46, Btbd4) defines the classical dendritic cell lineage. The Journal of Experimental Medicine, 209, 1153–1165.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Morelli, A. E., Rubin, J. P., Erdos, G., Tkacheva, O. A., Mathers, A. R., Zahorchak, A. F., Thomson, A. W., Falo, L. D. Jr., & Larregina, A. T. (2005). CD4+ T cell responses elicited by different subsets of human skin migratory dendritic cells. Journal of Immunology, 175, 7905–7915.

    Article  CAS  Google Scholar 

  • Nagao, K., Ginhoux, F., Leitner, W. W., Motegi, S., Bennett, C. L., Clausen, B. E., Merad, M., & Udey, M. C. (2009). Murine epidermal Langerhans cells and langerin-expressing dermal dendritic cells are unrelated and exhibit distinct functions. Proceedings of the National Academy of Sciences of the United States of America, 106, 3312–3317.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nestle, F. O., Zheng, X. G., Thompson, C. B., Turka, L. A., & Nickoloff, B. J. (1993). Characterization of dermal dendritic cells obtained from normal human skin reveals phenotypic and functionally distinctive subsets. Journal of Immunology, 151, 6535–6545.

    CAS  Google Scholar 

  • Nestle, F. O., Filgueira, L., Nickoloff, B. J., & Burg, G. (1998). Human dermal dendritic cells process and present soluble protein antigens. The Journal of investigative dermatology, 110, 762–766.

    Article  CAS  PubMed  Google Scholar 

  • Penel-Sotirakis, K., Simonazzi, E., Peguet-Navarro, J., & Rozieres, A. (2012). Differential capacity of human skin dendritic cells to polarize CD4+ T cells into IL-17, IL-21 and IL-22 producing cells. PLos One, 7, e45680.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Poulin, L. F., Salio, M., Griessinger, E., Anjos-Afonso, F., Craciun, L., Chen, J. L., Keller, A. M., Joffre, O., Zelenay, S., Nye, E., Le Moine, A., Faure, F., Donckier, V., Sancho, D., Cerundolo, V., Bonnet, D., & Reis e Sousa, C. (2010). Characterization of human DNGR-1+ BDCA3+ leukocytes as putative equivalents of mouse CD8alpha+ dendritic cells. The Journal of Experimental Medicine, 207, 1261–1271.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Robbins, S. H., Walzer, T., Dembele, D., Thibault, C., Defays, A., Bessou, G., Xu, H., Vivier, E., Sellars, M., Pierre, P., Sharp, F. R., Chan, S., Kastner, P., & Dalod, M. (2008). Novel insights into the relationships between dendritic cell subsets in human and mouse revealed by genome-wide expression profiling. Genome Biology, 9, R17.

    Article  PubMed Central  PubMed  Google Scholar 

  • Romani, N., Clausen, B. E., & Stoitzner, P. (2010). Langerhans cells and more: Langerin-expressing dendritic cell subsets in the skin. Immunological Reviews, 234, 120–141.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Satpathy, A. T., Kc, W., Albring, J. C., Edelson, B. T., Kretzer, N. M., Bhattacharya, D., Murphy, T. L., & Murphy, K. M. (2012). Zbtb46 expression distinguishes classical dendritic cells and their committed progenitors from other immune lineages. The Journal of Experimental Medicine, 209, 1135–1152.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schmitt, N., Morita, R., Bourdery, L., Bentebibel, S. E., Zurawski, S. M., Banchereau, J., & Ueno, H. (2009). Human dendritic cells induce the differentiation of interleukin-21-producing T follicular helper-like cells through interleukin-12. Immunity, 31, 158–169.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schmitt, N., Bustamante, J., Bourdery, L., Bentebibel, S. E., Boisson-Dupuis, S., Hamlin, F., Tran, M. V., Blankenship, D., Pascual, V., Savino, D. A., Banchereau, J., Casanova, J. L., & Ueno, H. (2013). IL-12 receptor beta1 deficiency alters in vivo T follicular helper cell response in humans. Blood, 121, 3375–3385.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schuler, G., & Steinman, R. M. (1985). Murine epidermal Langerhans cells mature into potent immunostimulatory dendritic cells in vitro. The Journal of Experimental Medicine, 161, 526–546.

    Article  CAS  PubMed  Google Scholar 

  • Segura, E., & Villadangos, J. A. (2009). Antigen presentation by dendritic cells in vivo. Current Opinion in Immunology, 21, 105–110.

    Article  CAS  PubMed  Google Scholar 

  • Sere, K., Baek, J. H., Ober-Blobaum, J., Muller-Newen, G., Tacke, F., Yokota, Y., Zenke, M., & Hieronymus, T. (2012). Two distinct types of Langerhans cells populate the skin during steady state and inflammation. Immunity, 37, 905–916.

    Article  CAS  PubMed  Google Scholar 

  • Steinman, R. M., & Cohn, Z. A. (1973). Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. The Journal of Experimental Medicine, 137, 1142–1162.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang, Y., Szretter, K. J., Vermi, W., Gilfillan, S., Rossini, C., Cella, M., Barrow, A. D., Diamond, M. S., & Colonna, M. (2012). IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia. Nature Immunology, 13, 753–760.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zaba, L. C., Fuentes-Duculan, J., Steinman, R. M., Krueger, J. G., & Lowes, M. A. (2007). Normal human dermis contains distinct populations of CD11c+BDCA-1+ dendritic cells and CD163 + FXIIIA + macrophages. Journal of Clinical Investigation, 117, 2517–2525.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ziegler, K., & Unanue, E. R. (1981). Identification of a macrophage antigen-processing event required for I-region-restricted antigen presentation to T lymphocytes. Journal of Immunology, 127, 1869–1875.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eynav Klechevsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Klechevsky, E. (2015). Functional Diversity of Human Dendritic Cells. In: Schoenberger, S., Katsikis, P., Pulendran, B. (eds) Crossroads Between Innate and Adaptive Immunity V. Advances in Experimental Medicine and Biology, vol 850. Springer, Cham. https://doi.org/10.1007/978-3-319-15774-0_4

Download citation

Publish with us

Policies and ethics