Skip to main content

Stability of Regulatory T Cells Undermined or Endorsed by Different Type-1 Cytokines

  • Conference paper
  • First Online:
Book cover Crossroads Between Innate and Adaptive Immunity V

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 850))

Abstract

Regulatory T cells (Tregs) encompass an array of immunosuppressive cells responsible for the protection against exacerbated immune responses and the maintenance of tissue homeostasis. Various Treg subtypes, normally resident within distinct lymphoid and non-lymphoid tissues, can be recruited and expanded during inflammation, possibly undergoing functional and molecular re-programming. Generally, two processes have been reported in different settings of type-1 response: i) Treg subpopulations acquiring the ability to specifically suppress Th1 cells (called Th1-suppressing Tregs), and ii) Treg subsets rather polarizing into IFN-γ-producing (called Th1-like) Tregs.

Along the development of type-1 responses, Tregs are exposed to a variety of cytokines and other signals, exerting disparate activities. The combinatorial effects of typical Th1-driving cytokines, such as IL-12 (mostly produced by antigen-presenting cells during Th1 priming) and IFN-γ (mostly produced by pre-existing NK cells) lead to inhibition of Treg expansion and function, while promoting Th1-like Treg polarization. Conversely, cytokines produced at more advanced phases by Th1 effectors, such as IL-2, TNF-α and IFN-γ, promote Treg proliferation and/or Th1-suppressing Treg specialization. Some controversy exists around IL-27 and IFN-α, cytokines possibly released during bacterial or viral infections. Furthermore, cytokine signals can be finely tuned by the concomitant stimulation of costimulatory or coinhibitory receptors, such as OX40 and PD-1 respectively, within inflamed tissues.

A model may be envisaged of an alternate Treg response to type-1 cytokines, being hampered or boosted by early or late phase cytokines, respectively. Such regulation would unleash the development of protective type-1 immunity while constraining exacerbated Th1 responses, possibly causing immunopathology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bacher, N., Raker, V., Hofmann, C., Graulich, E., Schwenk, M., Baumgrass, R., Bopp, T., Zechner, U., Merten, L., Becker, C., & Steinbrink, K. (2013). Interferon-alpha suppresses cAMP to disarm human regulatory T cells. Cancer Research, 73(18), 5647–5656. doi:10.1158/0008–5472.CAN-12-3788.

    Article  CAS  PubMed  Google Scholar 

  • Barnaba, V. (2010). Hepatitis C virus infection: A “liaison a trois” amongst the virus, the host, and chronic low-level inflammation for human survival. Journal of Hepatology, 53(4), 752–761. doi:10.1016/j.jhep.2010.06.003.

    Article  PubMed  Google Scholar 

  • Barnaba, V., & Schinzari, V. (2013). Induction, control, and plasticity of Treg cells: The immune regulatory network revised? European Journal of Immunology, 43(2), 318–322. doi:10.1002/eji.201243265.

    Article  CAS  PubMed  Google Scholar 

  • Boyman, O., & Sprent, J. (2012). The role of interleukin-2 during homeostasis and activation of the immune system. Nature Reviews Immunology, 12(3), 180–190. doi:10.1038/nri3156.

    CAS  PubMed  Google Scholar 

  • Burzyn, D., Benoist, C., & Mathis, D. (2013a). Regulatory T cells in nonlymphoid tissues. Nature Immunology, 14(10), 1007–1013. doi:10.1038/ni.2683.

    Article  CAS  PubMed  Google Scholar 

  • Burzyn, D., Kuswanto, W., Kolodin, D., Shadrach, J. L., Cerletti, M., Jang, Y., Sefik, E., Tan, T. G., Wagers, A. J., Benoist, C., & Mathis, D. (2013b). A special population of regulatory T cells potentiates muscle repair. Cell, 155(6), 1282–1295. doi:10.1016/j.cell.2013.10.054.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen, X., Baumel, M., Mannel, D. N., Howard, O. M., & Oppenheim, J. J. (2007). Interaction of TNF with TNF receptor type 2 promotes expansion and function of mouse CD4+ CD25+ T regulatory cells. The Journal of Immunology, 179(1), 154–161.

    Article  CAS  PubMed  Google Scholar 

  • Chen, X., Subleski, J. J., Kopf, H., Howard, O. M., Mannel, D. N., & Oppenheim, J. J. (2008). Cutting edge: Expression of TNFR2 defines a maximally suppressive subset of mouse CD4+CD25+FoxP3+ T regulatory cells: Applicability to tumor-infiltrating T regulatory cells. The Journal of Immunology, 180(10), 6467–6471.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen, X., Subleski, J. J., Hamano, R., Howard, O. M., Wiltrout, R. H., & Oppenheim, J. J. (2010). Co-expression of TNFR2 and CD25 identifies more of the functional CD4+FOXP3+ regulatory T cells in human peripheral blood. European Journal of Immunology, 40(4), 1099–1106. doi:10.1002/eji.200940022.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen, X., Wu, X., Zhou, Q., Howard, O. M., Netea, M. G., & Oppenheim, J. J. (2013). TNFR2 is critical for the stabilization of the CD4+Foxp3+ regulatory T. cell phenotype in the inflammatory environment. The Journal of Immunology, 190(3), 1076–1084. doi:10.4049/jimmunol.1202659.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cheng, G., Yu, A., & Malek, T. R. (2011). T-cell tolerance and the multi-functional role of IL-2.R signaling in T-regulatory cells. Immunological Reviews, 241(1), 63–76. doi:10.1111/j.1600–065X.2011.01004.x.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cipolletta, D., Feuerer, M., Li, A., Kamei, N., Lee, J., Shoelson, S. E., Benoist, C., & Mathis, D. (2012). PPAR-gamma is a major driver of the accumulation and phenotype of adipose tissue Treg cells. Nature, 486(7404), 549–553. doi:10.1038/nature11132.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Di Sabatino, A., Biancheri, P., Piconese, S., Rosado, M. M., Ardizzone, S., Rovedatti, L., Ubezio, C., Massari, A., Sampietro, G. M., Foschi, D., Porro, G. B., Colombo, M. P., Carsetti, R., MacDonald, T. T., & Corazza, G. R. (2010). Peripheral regulatory T cells and serum transforming growth factor-beta: Relationship with clinical response to infliximab in Crohn’s disease. Inflammatory Bowel Diseases, 16(11), 1891–1897. doi:10.1002/ibd.21271.

    Article  PubMed  Google Scholar 

  • Dominguez-Villar, M., Baecher-Allan, C. M., & Hafler, D. A. (2011). Identification of T helper type 1-like, Foxp3+ regulatory T cells in human autoimmune disease. Nature Medicine, 17(6), 673–675. doi:10.1038/nm.2389.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Du, W., Shen, Y. W., Lee, W. H., Wang, D., Paz, S., Kandeel, F., & Liu, C. P. (2013). Foxp3+ Treg expanded from patients with established diabetes reduce Helios expression while retaining normal function compared to healthy individuals. PLos One, 8(2), e56209. doi:10.1371/journal.pone.0056209.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Franceschini, D., Paroli, M., Francavilla, V., Videtta, M., Morrone, S., Labbadia, G., Cerino, A., Mondelli, M. U., & Barnaba, V. (2009). PD-L1 negatively regulates CD4+CD25+Foxp3+ Tregs by limiting STAT-5 phosphorylation in patients chronically infected with HCV. Journal of Clinical Investigation, 119(3), 551–564. doi:10.1172/JCI36604.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gonzalez-Navajas, J. M., Lee, J., David, M., & Raz, E. (2012). Immunomodulatory functions of type I interferons. Nature Reviews Immunology, 12(2), 125–135. doi:10.1038/nri3133.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Grinberg-Bleyer, Y., Saadoun, D., Baeyens, A., Billiard, F., Goldstein, J. D., Gregoire, S., Martin, G. H., Elhage, R., Derian, N., Carpentier, W., Marodon, G., Klatzmann, D., Piaggio, E., & Salomon, B. L. (2010). Pathogenic T cells have a paradoxical protective effect in murine autoimmune diabetes by boosting Tregs. Journal of Clinical Investigation, 120(12), 4558–4568. doi:10.1172/JCI42945.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Griseri, T., Asquith, M., Thompson, C., & Powrie, F. (2010). OX40 is required for regulatory T cell-mediated control of colitis. The Journal of Experimental Medicine, 207(4), 699–709. doi:10.1084/jem.20091618.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hall, A. O., Beiting, D. P., Tato, C., John, B., Oldenhove, G., Lombana, C. G., Pritchard, G. H., Silver, J. S., Bouladoux, N., Stumhofer, J. S., Harris, T. H., Grainger, J., Wojno, E. D., Wagage, S., Roos, D. S., Scott, P., Turka, L. A., Cherry, S., Reiner, S. L., Cua, D., Belkaid, Y., Elloso, M. M., & Hunter, C. A. (2012). The cytokines interleukin 27 and interferon-gamma promote distinct Treg cell populations required to limit infection-induced pathology. Immunity, 37(3), 511–523. doi:10.1016/j.immuni.2012.06.014.

    Article  PubMed Central  PubMed  Google Scholar 

  • Hamano, R., Huang, J., Yoshimura, T., Oppenheim, J. J., Chen, X. (2011). TNF optimally activatives regulatory T cells by inducing TNF receptor superfamily members TNFR2, 4-1BB and OX40. European Journal of Immunology, 41(7), 2010–2020. doi:10.1002/eji.201041205.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hippen, K. L., Harker-Murray, P., Porter, S. B., Merkel, S. C., Londer, A., Taylor, D. K., Bina, M., Panoskaltsis-Mortari, A., Rubinstein, P., Van Rooijen, N., Golovina, T. N., Suhoski, M. M., Miller, J. S., Wagner, J. E., June, C. H., Riley, J. L., & Blazar, B. R. (2008). Umbilical cord blood regulatory T-cell expansion and functional effects of tumor necrosis factor receptor family members OX40 and 4-1BB expressed on artificial antigen-presenting cells. Blood, 112(7), 2847–2857. doi:10.1182/blood-2008-01-132951.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hunter, C. A., & Kastelein, R. (2012). Interleukin-27: Balancing protective and pathological immunity. Immunity, 37(6), 960–969. doi:10.1016/j.immuni.2012.11.003.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Koch, M. A., Tucker-Heard, G., Perdue, N. R., Killebrew, J. R., Urdahl, K. B, & Campbell, D. J. (2009). The transcription factor T-bet controls regulatory T cell homeostasis and function during type 1 inflammation. Nature Immunology, 10(6), 595–602. doi:10.1038/ni.1731.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Koch, M. A., Thomas, K. R., Perdue, N. R., Smigiel, K. S., Srivastava, S., & Campbell, D. J. (2012). T-bet(+) Treg cells undergo abortive Th1 cell differentiation due to impaired expression of IL-12 receptor beta2. Immunity, 37(3), 501–510. doi:10.1016/j.immuni.2012.05.031.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Koenecke, C., Lee, C. W., Thamm, K., Fohse, L., Schafferus, M., Mittrucker, H. W., Floess, S., Huehn, J., Ganser, A., Forster, R., & Prinz, I. (2012). IFN-gamma production by allogeneic Foxp3+ regulatory T cells is essential for preventing experimental graft-versus-host disease. The Journal of Immunology, 189(6), 2890–2896. doi:10.4049/jimmunol.1200413.

    Article  CAS  PubMed  Google Scholar 

  • Lazarevic, V., Glimcher, L. H., & Lord, G. M. (2013). T-bet: A bridge between innate and adaptive immunity. Nature Reviews Immunology, 13(11), 777–789. doi:10.1038/nri3536.

    Article  CAS  PubMed  Google Scholar 

  • Le Buanec, H., Gougeon, M. L., Mathian, A., Lebon, P., Dupont, J. M., Peltre, G., Hemon, P., Schmid, M., Bizzini, B., Kunding, T., Burny, A., Bensussan, A., Amoura, Z., Gallo, R. C., & Zagury, D. (2011). IFN-alpha and CD46 stimulation are associated with active lupus and skew natural T regulatory cell differentiation to type 1 regulatory T (Tr1) cells. Proceedings of the National Academy of Sciences of the United States of America, 108(47), 18995–19000. doi:10.1073/pnas.1113301108.

    Google Scholar 

  • Lee, S. E., Li, X., Kim, J. C., Lee, J., Gonzalez-Navajas, J. M., Hong, S. H., Park, I. K., Rhee, J. H., & Raz, E. (2012). Type I interferons maintain Foxp3 expression and T-regulatory cell functions under inflammatory conditions in mice. Gastroenterology, 143(1), 145–154. doi:10.1053/j.gastro.2012.03.042.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lu, L. F., Boldin, M. P., Chaudhry, A., Lin, L. L., Taganov, K. D., Hanada, T., Yoshimura, A., Baltimore, D., & Rudensky, A. Y. (2010). Function of miR-146a in controlling Treg cell-mediated regulation of Th1 responses. Cell, 142(6), 914–929. doi:10.1016/j.cell.2010.08.012.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mahmud, S. A., Manlove, L. S., Schmitz, H. M., Xing, Y., Wang, Y., Owen, D. L., Schenkel, J. M., Boomer, J. S., Green, J. M., Yagita, H., Chi, H., Hogquist, K. A., & Farrar, M. A. (2014). Costimulation via the tumor-necrosis factor receptor superfamily couples TCR signal strength to the thymic differentiation of regulatory T cells. Nature Immunology, 15(5), 473–481. doi:10.1038/ni.2849.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Malek, T. R., & Bayer, A. L. (2004). Tolerance, not immunity, crucially depends on IL-2. Nature Reviews Immunology, 4(9), 665–674. doi:10.1038/nri1435.

    Article  CAS  PubMed  Google Scholar 

  • McClymont, S. A., Putnam, A. L., Lee, M. R., Esensten, J. H., Liu, W., Hulme, M. A., Hoffmuller, U., Baron, U., Olek, S., Bluestone, J. A., Brusko, T. M. (2011). Plasticity of human regulatory T cells in healthy subjects and patients with type 1 diabetes. The Journal of Immunology, 186(7), 3918–3926. doi:10.4049/jimmunol.1003099.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nadkarni, S., Mauri, C., & Ehrenstein, M. R. (2007). Anti-TNF-alpha therapy induces a distinct regulatory T cell population in patients with rheumatoid arthritis via TGF-beta. The Journal of Experimental Medicine, 204(1), 33–39. doi:10.1084/jem.20061531.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nagar, M., Jacob-Hirsch, J., Vernitsky, H., Berkun, Y., Ben-Horin, S., Amariglio, N., Bank, I., Kloog, Y., Rechavi, G., & Goldstein, I. (2010). TNF activates a NF-kappaBregulated cellular program in human CD45RA-regulatory T cells that modulates their suppressive function. The Journal of Immunology, 184(7), 3570–3581. doi:10.4049/jimmunol.0902070.

    Article  CAS  PubMed  Google Scholar 

  • Nie, H., Zheng, Y., Li, R., Guo, T. B., He, D., Fang, L., Liu, X., Xiao, L., Chen, X., Wan, B., Chin, Y. E., & Zhang, J. Z. (2013). Phosphorylation of FOXP3 controls regulatory T cell function and is inhibited by TNF-alpha in rheumatoid arthritis. Nature Medicine, 19(3), 322–328. doi:10.1038/nm.3085.

    Article  CAS  PubMed  Google Scholar 

  • Niesner, U., Albrecht, I., Janke, M., Doebis, C., Loddenkemper, C., Lexberg, M. H., Eulenburg, K., Kreher, S., Koeck, J., Baumgrass, R., Bonhagen, K., Kamradt, T., Enghard, P., Humrich, J. Y., Rutz, S., Schulze-Topphoff, U., Aktas, O., Bartfeld, S., Radbruch, H., Hegazy, A. N., Lohning, M., Baumgart, D. C., Duchmann, R., Rudwaleit, M., Haupl, T., Gitelman, I., Krenn, V., Gruen, J., Sieper, J., Zeitz, M., Wiedenmann, B., Zipp, F., Hamann, A., Janitz, M., Scheffold, A., Burmester, G. R., Chang, H. D., & Radbruch, A. (2008). Autoregulation of Th1-mediated inflammation by twist1. The Journal of Experimental Medicine, 205(8), 1889–1901. doi:10.1084/jem.20072468.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • O’Garra, A., & Vieira, P. (2007). T(H)1 cells control themselves by producing interleukin 10. Nature Reviews Immunology, 7(6), 425–428. doi:10.1038/nri2097.

    Article  PubMed  Google Scholar 

  • Oldenhove, G., Bouladoux, N., Wohlfert, E. A., Hall, J. A., Chou, D., Dos Santos, L., O’Brien, S., Blank, R., Lamb, E., Natarajan, S., Kastenmayer, R., Hunter, C., Grigg, M. E., & Belkaid, Y. (2009). Decrease of Foxp3+ Treg cell number and acquisition of effector cell phenotype during lethal infection. Immunity, 31(5), 772–786. doi:10.1016/j.immuni.2009.10.001.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pace, L., Vitale, S., Dettori, B., Palombi, C., La Sorsa, V., Belardelli, F., Proietti, E., & Doria, G. (2010). APC activation by IFN-alpha decreases regulatory T cell and enhances Th cell functions. The Journal of Immunology, 184(11), 5969–5979. doi:10.4049/jimmunol.0900526.

    Article  CAS  PubMed  Google Scholar 

  • Piconese, S., Pittoni, P., Burocchi, A., Gorzanelli, A., Care, A., Tripodo, C., & Colombo, M. P. (2010). A non-redundant role for OX40 in the competitive fitness of Treg in response to IL-2. European Journal of Immunology, 40(10), 2902–2913. doi:10.1002/eji.201040505.

    Article  PubMed  Google Scholar 

  • Piconese, S., Timperi, E., Pacella, I., Schinzari, V., Tripodo, C., Rossi, M., Guglielmo, N., Mennini, G., Grazi, G. L., Di Filippo, S., Brozzetti, S., Fazzi, K., Antonelli, G., Lozzi, M. A., Sanchez, M., & Barnaba, V. (2014). Human OX40 tunes the function of regulatory T cells in tumor and non-tumor areas of HCV-infected liver tissue. Hepatology. doi:10.1002/hep.27188.

    Google Scholar 

  • Redjimi, N., Raffin, C., Raimbaud, I., Pignon, P., Matsuzaki, J., Odunsi, K., Valmori, D., & Ayyoub, M. (2012). CXCR3+ T regulatory cells selectively accumulate in human ovarian carcinomas to limit type I immunity. Cancer Research, 72(17), 43514360. doi:10.1158/0008-5472.CAN-12-0579.

    Article  Google Scholar 

  • Ruby, C. E., Yates, M. A., Hirschhorn-Cymerman, D., Chlebeck, P., Wolchok, J. D., Houghton, A. N., Offner, H., & Weinberg, A. D. (2009). Cutting Edge: OX40 agonists can drive regulatory T cell expansion if the cytokine milieu is right. The Journal of Immunology, 183(8), 4853–4857. doi:10.4049/jimmunol.0901112.

    Article  CAS  PubMed  Google Scholar 

  • Sage, P. T., Francisco, L. M., Carman, C. V., & Sharpe, A. H. (2013). The receptor PD-1 controls follicular regulatory T cells in the lymph nodes and blood. Nature Immunology, 14(2), 152–161. doi:10.1038/ni.2496.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shafiani, S., Dinh, C., Ertelt, J. M., Moguche, A. O., Siddiqui, I., Smigiel, K. S., Sharma, P., Campbell, D. J., Way, S. S., & Urdahl, K. B. (2013). Pathogen-specific Treg cells expand early during mycobacterium tuberculosis infection but are later eliminated in response to Interleukin-12. Immunity, 38(6), 1261–1270. doi:10.1016/j.immuni.2013.06.003.

    Article  CAS  PubMed  Google Scholar 

  • Smigiel, K. S., Srivastava, S., Stolley, J. M., & Campbell, D. J. (2014). Regulatory T-cell homeostasis: Steady-state maintenance and modulation during inflammation. Immunological Reviews, 259(1), 40–59. doi:10.1111/imr.12170.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Srivastava, S., Koch, M. A., Pepper, M., & Campbell, D. J. (2014). Type I interferons directly inhibit regulatory T cells to allow optimal antiviral T cell responses during acute LCMV infection. The Journal of Experimental Medicine, 211(5), 961–974. doi:10.1084/jem.20131556.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stewart, C. A., Metheny, H., Iida, N., Smith, L., Hanson, M., Steinhagen, F., Leighty, R. M., Roers, A., Karp, C. L., Muller, W., & Trinchieri, G. (2013). Interferon-dependent IL-10 production by Tregs limits tumor Th17 inflammation. Journal of Clinical Investigation, 123(11), 4859–4874. doi:10.1172/JCI65180.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Trinchieri, G. (2010). Type I interferon: Friend or foe? The Journal of Experimental Medicine, 207(10), 2053–2063. doi:10.1084/jem.20101664.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xiao, X., Gong, W., Demirci, G., Liu, W., Spoerl, S., Chu, X., Bishop, D. K., Turka, L. A., & Li, X. C. (2012). New insights on OX40 in the control of T cell immunity and immune tolerance in vivo. The Journal of Immunology, 188(2), 892–901. doi:10.4049/jimmunol.1101373.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhao, J., & Perlman, S. (2012). Differential effects of IL-12 on Tregs and non-Treg T cells: Roles of IFN-gamma, IL-2 and IL-2R. PLos One, 7(9), e46241. doi:10.1371/journal.pone.0046241.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhao, J., Fett, C., Trandem, K., Fleming, E., & Perlman, S. (2011). IFN-gamma-and IL-10expressing virus epitope-specific Foxp3(+) T reg cells in the central nervous system during encephalomyelitis. The Journal of Experimental Medicine, 208(8), 1571–1577. doi:10.1084/jem.20110236.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhong, H., & Yazdanbakhsh, K. (2013). Differential control of Helios(+/-) Treg development by monocyte subsets through disparate inflammatory cytokines. Blood, 121(13), 2494–2502. doi:10.1182/blood-2012-11-469122.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenzo Barnaba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Piconese, S., Barnaba, V. (2015). Stability of Regulatory T Cells Undermined or Endorsed by Different Type-1 Cytokines. In: Schoenberger, S., Katsikis, P., Pulendran, B. (eds) Crossroads Between Innate and Adaptive Immunity V. Advances in Experimental Medicine and Biology, vol 850. Springer, Cham. https://doi.org/10.1007/978-3-319-15774-0_2

Download citation

Publish with us

Policies and ethics