Advertisement

Analytical Modeling of the Viscoelastic Behavior of Periodontal Ligament with Using Rabotnov’s Fractional Exponential Function

  • Sergei BosiakovEmail author
  • Sergei Rogosin
Chapter
  • 727 Downloads
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 343)

Abstract

The mathematical modeling of a stress-strain state of the viscoelastic periodontal membrane is carried out. Internal and external surfaces of the periodontal ligament are described by a symmetrical two-sheeted hyperboloid. Tooth root is assumed to be a rigid body. Displacements of points on the internal surface of the periodontal ligament coincide with the displacements of the corresponding points of the external surface of the tooth root. The relationships between the displacements and strains for periodontal ligaments are formulated as an assumption that the periodontal tissue approaches to incompressible materials. Viscoelastic constitutive law with a fractional exponential kernel for periodontal ligament was used. The equations of motion for the periodontal ligament relative to translational displacements and rotation angles of its points are derived. In the particular case the vertical translational motion of the tooth root, as well as corresponding displacements are analyzed. Constants of the fractional viscoelastic function were assessed on the basis of the experimental data about the behavior of the periodontal ligament. The obtained results can be used to determine a load for orthodontic tooth movement corresponding to the optimal stresses, as well as to simulate bone remodeling on the basis of changes of stresses and strains in the periodontal ligament during orthodontic movement.

Keywords

Periodontal ligament Tooth root Viscoelastic model Fractional exponential function Translational displacement 

Notes

Acknowledgements

The research is supported by the FP7 IRSES Marie Curie grant TAMER No 610547. The authors are thankful to professor Francesco Mainardi and to professor Ivan Argatov for valuable discussions of the results of the paper.

References

  1. 1.
    Masella, R.S., Meister, M.: Current concepts in the biology of orthodontic tooth movement. Am. J. Orthod. Dentofac. Orthop. 129, 458–468 (2006)CrossRefGoogle Scholar
  2. 2.
    Wise, G.E., King, G.J.: Mechanisms of tooth eruption and orthodontic tooth movement. J. Dent. Res. 87, 414–434 (2008)CrossRefGoogle Scholar
  3. 3.
    Fill, T.S., Toogood, R.W., Major, P.W., Carey, J.P.: Analytically determined mechanical properties of, and models for the periodontal ligament: Critical review of literature. J. Biomech. 45, 9–16 (2012)CrossRefGoogle Scholar
  4. 4.
    Komatsu, K.: Mechanical strength and viscoelastic response of the periodontal ligament in relation to structure. J. Dent. Biomech. 1, 1–18 (2010)CrossRefGoogle Scholar
  5. 5.
    Qian, L., Todo, M., Morita, Y., Matsushita, Y., Koyano, K.: Deformation analysis of the periodontium considering the viscoelasticity of the periodontal ligament. Dent. Mater. 25, 1285–1292 (2009)CrossRefGoogle Scholar
  6. 6.
    Wood, S.A., Strait, D.S., Dumont, E.R., Ross, C.F., Grosse, I.R.: The effects of modeling simplifications on craniofacial finite element models: The alveoli (tooth sockets) and periodontal ligaments. J. Biomech. 44, 1831–1838 (2011)CrossRefGoogle Scholar
  7. 7.
    Ferrari, M., Sorrentino, R., Zarone, F., Apicella, D., Aversa, R., Apicella, A.: Non-linear viscoelastic finite element analysis of the effect of the length of glass fiber posts on the biomechanical behaviour of directly restored incisors and surrounding alveolar bone. Dent. Mater. J. 27, 485–498 (2008)CrossRefGoogle Scholar
  8. 8.
    Natali, A.N., Pavan, P.G., Scarpa, C.: Numerical analysis of tooth mobility: Formulation of a non-linear constitutive law for the periodontal ligament. Dent. Mater. 20, 623–629 (2004)CrossRefGoogle Scholar
  9. 9.
    Toms, S.R., Eberhardt, A.W.: A nonlinear finite element analysis of the periodontal ligament under orthodontic tooth loading. Am. J. Orthod. Dentofac. Orthop. 123, 657–665 (2003)CrossRefGoogle Scholar
  10. 10.
    Bergomi, M., Cugnoni, J., Galli, M., Botsis, J., Belser, U.C., Wiskott, H.W.A.: Hydro-mechanical coupling in the periodontal ligament: A porohyperelastic finite element model. J. Biomech. 44, 34–38 (2011)CrossRefGoogle Scholar
  11. 11.
    Naveh, G.R.S., Chattah, N.L.-T., Zaslansky, P., Shahar, R., Weiner, S.: Tooth-PDL-bone complex: Response to compressive loads encountered during mastication - a review. Arch. Oral Biol. 57, 1575–1584 (2012)CrossRefGoogle Scholar
  12. 12.
    Yoshida, N., Koga, Y., Peng, Ch.-L., Tanaka, E., Kobayashi, K.: In vivo measurement of the elastic modulus of the human periodontal ligament. Med. Eng. Phys. 23, 567–572 (2001)CrossRefGoogle Scholar
  13. 13.
    Cronau, M., Ihlow, D., Kubein-Meesenburg, D., Fanghanel, J., Dathe, H., Nagerl, H.: Biomechanical features of the periodontium: An experimental pilot study in vivo. Am. J. Orthod. Dentofac. Orthop. 129, 599.e13–599.e21 (2006)Google Scholar
  14. 14.
    Fill, T.S., Carey, J.P., Toogood, R.W., Major, P.W.: Experimentally determined mechanical properties of, and models for, the periodontal ligament: Critical review of current literature. J. Dent. Biomech. 2, 1–11 (2011)CrossRefGoogle Scholar
  15. 15.
    Uchaikin, V.: Fractional Derivatives for Physicists and Engineers, vols. I–II. Springer/Higher Education Press, Berlin/Beijing (2013)CrossRefGoogle Scholar
  16. 16.
    Koeller, R.C.: A theory relating creep and relaxation for linear materials with memory. J. Appl. Mech. 77, 031008-1–031008-9 (2010)Google Scholar
  17. 17.
    West, B.J., Bologna, M., Grigolini, P.: Physics of Fractal Operators. Springer, NewYork (2003)CrossRefGoogle Scholar
  18. 18.
    Rogosin, S., Mainardi, F.: George William Scott Blair - the pioneer of factional calculus in rheology. Commun. Appl. Ind. Math. 6(1), e481 (2014)MathSciNetGoogle Scholar
  19. 19.
    Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity. Imperial College Press/World Scientific, London/Singapore (2010)zbMATHCrossRefGoogle Scholar
  20. 20.
    Rossikhin, Yu.A., Shitikova, M.V.: Nonlinear dynamic response of a fractionally damped suspension bridge subjected to small external force. Int. J. Mech. 7, 155–163 (2013)Google Scholar
  21. 21.
    Rossikhin, Yu.A., Shitikova, M.V., Popov, I.I.: Dynamic response of a hereditarily elastic beam with Rabotnov’s kernel impacted by an elastic rod. In: Proceedings of the 2014 International Conference on Mathematical Models and Methods in Applied Sciences, pp. 25–31. Saint Petersburg State Polytechnic University, Saint-Petersburg (2014)Google Scholar
  22. 22.
    Sibatov, R.T., Svetukhin, V.V., Uchaikin, V.V., Morozova, E. V.: Fractional model of electron diffusion in dye-sensitized nanocrystalline solar cells. In: Proceedings of the 2014 International Conference on Mathematical Models and Methods in Applied Sciences, pp. 118–121. Saint Petersburg State Polytechnic University, Saint-Petersburg (2014)Google Scholar
  23. 23.
    Rabotnov, Yu.N.: Elements of Hereditary Solid Mechanics. Mir Publishers, Moscow (1980)zbMATHGoogle Scholar
  24. 24.
    Koeller, R.C.: Application of fractional calculus to the theory of viscoelasticity. J. Appl. Mech. 51, 299–307 (1984)zbMATHMathSciNetCrossRefGoogle Scholar
  25. 25.
    Rossikhin, Yu.A., Shitikova, M.V.: Centennial jubilee of academician Rabotnov and contemporary handling of his fractional operator. Fract. Calc. Appl. Anal. 17, 674–683 (2014)zbMATHMathSciNetCrossRefGoogle Scholar
  26. 26.
    Rossikhin, Yu.A., Shitikova, M.V.: Two approaches for studying the impact response of viscoelastic engineering systems: An overview. Comput. Math. Appl. 66, 755–773 (2013)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Gorenflo, R., Kilbas, A., Mainardi, F., Rogosin, S.: Mittag-Leffler Functions, Related Topics and Applications. Springer, New York (2014)zbMATHGoogle Scholar
  28. 28.
    Hohmann, A., Kober, C., Young, Ph., Dorow, Ch., Geiger, M., Boryor, A., Sander, F.M., Sander, Ch., Sander, F.G.: Influence of different modeling strategies for the periodontal ligament on finite element simulation results. Am. J. Orthod. Dentofac. Orthop. 139, 775–783 (2011)CrossRefGoogle Scholar
  29. 29.
    Provatidis, C.G.: An analytical model for stress analysis of a tooth in translation. Int. J. Eng. Sci. 39, 1361–1381 (2001)CrossRefGoogle Scholar
  30. 30.
    Van Schepdael, A., Geris, L., Van der Sloten, J.: Analytical determination of stress patterns in the periodontal ligament during orthodontic tooth movement. Med. Eng. Phys. 35, 403–410 (2013)CrossRefGoogle Scholar
  31. 31.
    Rabotnov, Yu.N.: Equilibrium of an elastic medium with after-effect. Fract. Calc. Appl. Anal. 17, 684–696 (2014)zbMATHMathSciNetCrossRefGoogle Scholar
  32. 32.
    Tanne, K., Nagataki, T., Innoue, Y., Sakuda, M., Burstone, C.J.: Patterns of initial tooth displacement associated with various root lengths and alveolar bone heights. Am. J. Orthod. Dentofac Orthop. 100, 66–71 (1991)CrossRefGoogle Scholar
  33. 33.
    Slomka, N., Vardimon, A.D., Gefen, A., Pilo, R., Bourauel, C., Brosh, T.: Time-related PDL: Viscoelastic response during initial orthodontic tooth movement of a tooth with functioning interproximal contact – a mathematical model. J. Biomech. 41, 1871–1877 (2008)CrossRefGoogle Scholar
  34. 34.
    Rossikhin, Yu.A.: Reflections on two parallel ways in the progress of fractional calculus in mechanics of solids. Appl. Mech. Rev. 63, 010701-1–010701-12 (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Theoretical and Applied MechanicsBelarusian State UniversityMinskBelarus
  2. 2.Institute of Mathematics, Physics and Computer SciencesAberystwyth UniversityPenglais, Aberystwyth CeredigionUK
  3. 3.Department of EconomicsBelarusian State UniversityMinskBelarus

Personalised recommendations