Skip to main content

Analytical Modeling of the Viscoelastic Behavior of Periodontal Ligament with Using Rabotnov’s Fractional Exponential Function

  • Chapter
Computational Problems in Science and Engineering

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 343))

Abstract

The mathematical modeling of a stress-strain state of the viscoelastic periodontal membrane is carried out. Internal and external surfaces of the periodontal ligament are described by a symmetrical two-sheeted hyperboloid. Tooth root is assumed to be a rigid body. Displacements of points on the internal surface of the periodontal ligament coincide with the displacements of the corresponding points of the external surface of the tooth root. The relationships between the displacements and strains for periodontal ligaments are formulated as an assumption that the periodontal tissue approaches to incompressible materials. Viscoelastic constitutive law with a fractional exponential kernel for periodontal ligament was used. The equations of motion for the periodontal ligament relative to translational displacements and rotation angles of its points are derived. In the particular case the vertical translational motion of the tooth root, as well as corresponding displacements are analyzed. Constants of the fractional viscoelastic function were assessed on the basis of the experimental data about the behavior of the periodontal ligament. The obtained results can be used to determine a load for orthodontic tooth movement corresponding to the optimal stresses, as well as to simulate bone remodeling on the basis of changes of stresses and strains in the periodontal ligament during orthodontic movement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Masella, R.S., Meister, M.: Current concepts in the biology of orthodontic tooth movement. Am. J. Orthod. Dentofac. Orthop. 129, 458–468 (2006)

    Article  Google Scholar 

  2. Wise, G.E., King, G.J.: Mechanisms of tooth eruption and orthodontic tooth movement. J. Dent. Res. 87, 414–434 (2008)

    Article  Google Scholar 

  3. Fill, T.S., Toogood, R.W., Major, P.W., Carey, J.P.: Analytically determined mechanical properties of, and models for the periodontal ligament: Critical review of literature. J. Biomech. 45, 9–16 (2012)

    Article  Google Scholar 

  4. Komatsu, K.: Mechanical strength and viscoelastic response of the periodontal ligament in relation to structure. J. Dent. Biomech. 1, 1–18 (2010)

    Article  Google Scholar 

  5. Qian, L., Todo, M., Morita, Y., Matsushita, Y., Koyano, K.: Deformation analysis of the periodontium considering the viscoelasticity of the periodontal ligament. Dent. Mater. 25, 1285–1292 (2009)

    Article  Google Scholar 

  6. Wood, S.A., Strait, D.S., Dumont, E.R., Ross, C.F., Grosse, I.R.: The effects of modeling simplifications on craniofacial finite element models: The alveoli (tooth sockets) and periodontal ligaments. J. Biomech. 44, 1831–1838 (2011)

    Article  Google Scholar 

  7. Ferrari, M., Sorrentino, R., Zarone, F., Apicella, D., Aversa, R., Apicella, A.: Non-linear viscoelastic finite element analysis of the effect of the length of glass fiber posts on the biomechanical behaviour of directly restored incisors and surrounding alveolar bone. Dent. Mater. J. 27, 485–498 (2008)

    Article  Google Scholar 

  8. Natali, A.N., Pavan, P.G., Scarpa, C.: Numerical analysis of tooth mobility: Formulation of a non-linear constitutive law for the periodontal ligament. Dent. Mater. 20, 623–629 (2004)

    Article  Google Scholar 

  9. Toms, S.R., Eberhardt, A.W.: A nonlinear finite element analysis of the periodontal ligament under orthodontic tooth loading. Am. J. Orthod. Dentofac. Orthop. 123, 657–665 (2003)

    Article  Google Scholar 

  10. Bergomi, M., Cugnoni, J., Galli, M., Botsis, J., Belser, U.C., Wiskott, H.W.A.: Hydro-mechanical coupling in the periodontal ligament: A porohyperelastic finite element model. J. Biomech. 44, 34–38 (2011)

    Article  Google Scholar 

  11. Naveh, G.R.S., Chattah, N.L.-T., Zaslansky, P., Shahar, R., Weiner, S.: Tooth-PDL-bone complex: Response to compressive loads encountered during mastication - a review. Arch. Oral Biol. 57, 1575–1584 (2012)

    Article  Google Scholar 

  12. Yoshida, N., Koga, Y., Peng, Ch.-L., Tanaka, E., Kobayashi, K.: In vivo measurement of the elastic modulus of the human periodontal ligament. Med. Eng. Phys. 23, 567–572 (2001)

    Article  Google Scholar 

  13. Cronau, M., Ihlow, D., Kubein-Meesenburg, D., Fanghanel, J., Dathe, H., Nagerl, H.: Biomechanical features of the periodontium: An experimental pilot study in vivo. Am. J. Orthod. Dentofac. Orthop. 129, 599.e13–599.e21 (2006)

    Google Scholar 

  14. Fill, T.S., Carey, J.P., Toogood, R.W., Major, P.W.: Experimentally determined mechanical properties of, and models for, the periodontal ligament: Critical review of current literature. J. Dent. Biomech. 2, 1–11 (2011)

    Article  Google Scholar 

  15. Uchaikin, V.: Fractional Derivatives for Physicists and Engineers, vols. I–II. Springer/Higher Education Press, Berlin/Beijing (2013)

    Book  Google Scholar 

  16. Koeller, R.C.: A theory relating creep and relaxation for linear materials with memory. J. Appl. Mech. 77, 031008-1–031008-9 (2010)

    Google Scholar 

  17. West, B.J., Bologna, M., Grigolini, P.: Physics of Fractal Operators. Springer, NewYork (2003)

    Book  Google Scholar 

  18. Rogosin, S., Mainardi, F.: George William Scott Blair - the pioneer of factional calculus in rheology. Commun. Appl. Ind. Math. 6(1), e481 (2014)

    MathSciNet  Google Scholar 

  19. Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity. Imperial College Press/World Scientific, London/Singapore (2010)

    Book  MATH  Google Scholar 

  20. Rossikhin, Yu.A., Shitikova, M.V.: Nonlinear dynamic response of a fractionally damped suspension bridge subjected to small external force. Int. J. Mech. 7, 155–163 (2013)

    Google Scholar 

  21. Rossikhin, Yu.A., Shitikova, M.V., Popov, I.I.: Dynamic response of a hereditarily elastic beam with Rabotnov’s kernel impacted by an elastic rod. In: Proceedings of the 2014 International Conference on Mathematical Models and Methods in Applied Sciences, pp. 25–31. Saint Petersburg State Polytechnic University, Saint-Petersburg (2014)

    Google Scholar 

  22. Sibatov, R.T., Svetukhin, V.V., Uchaikin, V.V., Morozova, E. V.: Fractional model of electron diffusion in dye-sensitized nanocrystalline solar cells. In: Proceedings of the 2014 International Conference on Mathematical Models and Methods in Applied Sciences, pp. 118–121. Saint Petersburg State Polytechnic University, Saint-Petersburg (2014)

    Google Scholar 

  23. Rabotnov, Yu.N.: Elements of Hereditary Solid Mechanics. Mir Publishers, Moscow (1980)

    MATH  Google Scholar 

  24. Koeller, R.C.: Application of fractional calculus to the theory of viscoelasticity. J. Appl. Mech. 51, 299–307 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  25. Rossikhin, Yu.A., Shitikova, M.V.: Centennial jubilee of academician Rabotnov and contemporary handling of his fractional operator. Fract. Calc. Appl. Anal. 17, 674–683 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  26. Rossikhin, Yu.A., Shitikova, M.V.: Two approaches for studying the impact response of viscoelastic engineering systems: An overview. Comput. Math. Appl. 66, 755–773 (2013)

    Article  MathSciNet  Google Scholar 

  27. Gorenflo, R., Kilbas, A., Mainardi, F., Rogosin, S.: Mittag-Leffler Functions, Related Topics and Applications. Springer, New York (2014)

    MATH  Google Scholar 

  28. Hohmann, A., Kober, C., Young, Ph., Dorow, Ch., Geiger, M., Boryor, A., Sander, F.M., Sander, Ch., Sander, F.G.: Influence of different modeling strategies for the periodontal ligament on finite element simulation results. Am. J. Orthod. Dentofac. Orthop. 139, 775–783 (2011)

    Article  Google Scholar 

  29. Provatidis, C.G.: An analytical model for stress analysis of a tooth in translation. Int. J. Eng. Sci. 39, 1361–1381 (2001)

    Article  Google Scholar 

  30. Van Schepdael, A., Geris, L., Van der Sloten, J.: Analytical determination of stress patterns in the periodontal ligament during orthodontic tooth movement. Med. Eng. Phys. 35, 403–410 (2013)

    Article  Google Scholar 

  31. Rabotnov, Yu.N.: Equilibrium of an elastic medium with after-effect. Fract. Calc. Appl. Anal. 17, 684–696 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  32. Tanne, K., Nagataki, T., Innoue, Y., Sakuda, M., Burstone, C.J.: Patterns of initial tooth displacement associated with various root lengths and alveolar bone heights. Am. J. Orthod. Dentofac Orthop. 100, 66–71 (1991)

    Article  Google Scholar 

  33. Slomka, N., Vardimon, A.D., Gefen, A., Pilo, R., Bourauel, C., Brosh, T.: Time-related PDL: Viscoelastic response during initial orthodontic tooth movement of a tooth with functioning interproximal contact – a mathematical model. J. Biomech. 41, 1871–1877 (2008)

    Article  Google Scholar 

  34. Rossikhin, Yu.A.: Reflections on two parallel ways in the progress of fractional calculus in mechanics of solids. Appl. Mech. Rev. 63, 010701-1–010701-12 (2010)

    Google Scholar 

Download references

Acknowledgements

The research is supported by the FP7 IRSES Marie Curie grant TAMER No 610547. The authors are thankful to professor Francesco Mainardi and to professor Ivan Argatov for valuable discussions of the results of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergei Bosiakov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bosiakov, S., Rogosin, S. (2015). Analytical Modeling of the Viscoelastic Behavior of Periodontal Ligament with Using Rabotnov’s Fractional Exponential Function. In: Mastorakis, N., Bulucea, A., Tsekouras, G. (eds) Computational Problems in Science and Engineering. Lecture Notes in Electrical Engineering, vol 343. Springer, Cham. https://doi.org/10.1007/978-3-319-15765-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15765-8_7

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15764-1

  • Online ISBN: 978-3-319-15765-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics