Advertisement

Systolic Approach for QR Decomposition

  • Halil SnopceEmail author
  • Azir Aliu
Chapter
  • 756 Downloads
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 343)

Abstract

In this paper we discuss the parallelization of the QR decomposition of matrices based on Given’s rotation using the iterative algorithm. For this purpose we have used the systolic approach. The mathematical background of the problem is followed by the parallelization which continues step by step as it is shown at Figs. 25.5 and 25.6. The output values of Fig. 25.5 become the input for Fig. 25.6 and vice versa, the output values of Fig. 25.6 become the input for Fig. 25.5. This kind of iteration is repeated until achieving the convergence.

Keywords

QR decomposition Parallelization of QR decomposition Systolic array Given’s rotations Computing the orthonormal matrix Computing the upper triangular matrix 

References

  1. 1.
    Wilkinson, J.H.: The Algebraic Eigenvalue Problem. Clarendon Press, Oxford (1965)zbMATHGoogle Scholar
  2. 2.
    Johnsson, L.: A computational array for the QR method. In: Proceedings of 1982 Conference on Advanced Research in VLSI, pp. 123–129. MIT, Cambridge, MAGoogle Scholar
  3. 3.
    Sameh, A.H., Kuck, D.J.: On stable parallel linear system solvers. J. ACM 25, 81–95 (1978)zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Modi, J., Clarke, M.: An alternative givens ordering. Numer. Math. 43(1), 83–90 (1984)zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Hofmann, M., Kontoghiorghes, E.: Pipeline Givens sequences for computing the QR decomposition on a EREW PRAM. Parallel Comput 32(3), 222–230 (2006)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Berry, M., Dongara, J., Kim, Y.: A parallel algorithm for the reduction of a nonsymmetric matrix to block upper-Hessenberg form. Parallel Comput 21(8), 1189–1211 (1995)zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Kung, S.Y.: VLSI array processors. Englewood Cliffs, Prentice Hall (1988)Google Scholar
  8. 8.
    Swartzlander EE. (ed.) Systolic Signal Processing Systems. Marcel Decker, New York (1987)Google Scholar
  9. 9.
    Kahaner, D., Moler, C., Nash, S.: Numerical Methods and Software. Prentice Hall, Englewood Cliffs (1989)zbMATHGoogle Scholar
  10. 10.
    Jacobi, C.G.J.: Uber eine neue Auflosungsart der bei der Methode der kleinsten Quadrate vorkommenden linearen Gleichungen. Astronomishe Nachricten, 22, 1845. English translation by G.W. Stewart, Technical Report 2877, Department of Computer Science, University of Maryland (1992)Google Scholar
  11. 11.
    Gentleman, W.M., Kung, H.T.: Matrix triangularization by systolic array. Proc. SPIE Int. Soc. Opt. Eng. 298, 298 (1981)Google Scholar
  12. 12.
    McWhirter, J.G., Shepherd, T.J.: An efficient systolic array for MVDR beamforming. In: Proceedings of International Conference on Systolic Arrays, pp. 11–20 (1988)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.SEE-University, CST FacultyTetovoMacedonia (FYROM)

Personalised recommendations