Advertisement

First Time Electronic Structure Calculation of Poly[μ2-L-Alanine-μ3-Sodium Nitrate (I)] Crystals with Non-linear Optical Properties

  • A. Duarte-MollerEmail author
  • E. Gallegos-Loya
  • E. Orrantia Borunda
Chapter
  • 722 Downloads
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 343)

Abstract

The abstract should summarize the contents of the paper and should Poly[μ2-L-alanine-μ3-nitrato-sodium(I)], p-LASN, crystals were grown by the slow evaporation at room temperature technique. The nominal size of the crystals obtained by the method was of 500 nm. Single Crystal Diffraction was carried out in order to determine atomic structure and refine its lattice parameter. The electronic structure was obtained by using the Becke-Lee-Yang-Part and Hartree-Fock approximations with hybrid exchange-correlation three-parameter functional and G-311**G(dp) basis set. After calculations the band gap obtained directly from the density of states was 2.72 eV. The total polarizability obtained was 70.7390, the value for the total hyperpolarizability is 56.0243 and the dipolar moment was 10.6364.

Keywords

Electronic structure Alanine Second harmonic Non-linear optic 

Notes

Acknowledgments

The authors thank the National Council of Science and Technology of Mexico for its financial support. Also, they thank the National Laboratory of Nanotechnology of CIMAV, S.C., Chihuahua, Mexico. The authors are very grateful to acknowledge M. Sci. Enrique Torres Moye (X-ray laboratory), M. Sci. Daniel Lardizabal (thermal analysis laboratory).

References

  1. 1.
    Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences. J. Mol. Biol. 147, 195–197 (1981)CrossRefGoogle Scholar
  2. 2.
    Vijayan, N., Rajasekaran, S., Bhagavannarayana, G., Ramesh Babu, R., Gopalakrishnan, R., Palanichamy, M., Ramasamy, P.: Cryst. Growth Des. 6(11), 2441 (2006)CrossRefGoogle Scholar
  3. 3.
    Rodrigues, J., Misoguti, L., Nunes, F.D., Mendonca, C.R., Zilo, S.C.: Opt. Mater. 22, 235 (2003)CrossRefGoogle Scholar
  4. 4.
    Ambujam, K., Selvakumar, S., Prem, A.D., Mohamed, G., Sagayaraj, P.: Cryst. Res. Tech. 41, 671 (2006)CrossRefGoogle Scholar
  5. 5.
    Ramesh Kumar, G., Gokul Raj, S., Mohan, R., Jeyavel, R.: Cryst. Growth Des. 6, 1308 (2006)CrossRefGoogle Scholar
  6. 6.
    Sethuraman, K., Ramesh Babu, R., Gopalakrishnan, R., Ramasamy, P.: Cryst. Growth Des. 8(6), 1863 (2008)CrossRefGoogle Scholar
  7. 7.
    Meera, K., Muralidharan, R., Dhanasekaran, R., Prapun, M., Ramasamy, P.: J. Cryst. Growth 263, 510 (2004)CrossRefGoogle Scholar
  8. 8.
    Mohankumar, R., Rajanbabu, D., Jayaraman, D., Jayavel, R., Kitamura, K.: J. Cryst. Growth 275, 1935 (2005)CrossRefGoogle Scholar
  9. 9.
    Narayan Bhat, M., Dharmaprakash, S.: J. Cryst. Growth 236, 376 (2002)CrossRefGoogle Scholar
  10. 10.
    Van Kristof, H., Els, C., Tatjana Parac-Vogt, N., Christiane, G.W., Luc, V.M.: Acta Cryst. E 63, m2354 (2007)CrossRefGoogle Scholar
  11. 11.
    Foresman, J.B.: Frisch, Exploring Chemistry with Electronic Structure Methods, 2nd edn. Gaussian Inc., Pittsburgh (1996)Google Scholar
  12. 12.
    Hernández-Paredes, J., Glossman-Mitnik, D., Esparza-Ponce, H.E., Alváres-Ramos, M.E., Duarte-Moller, A.: J. Mol. Struct. 875(1), 295 (2008)CrossRefGoogle Scholar
  13. 13.
    Ostroverkhov, V., Ostroverkhova, O., Petschek, R.G., Singer, K.D., Sukhomlinova, L., Twieg, R.J., Wang, S.-X., Chien, L.C.: Chem. Phys. 257, 263 (2000)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • A. Duarte-Moller
    • 1
    • 2
    Email author
  • E. Gallegos-Loya
    • 3
  • E. Orrantia Borunda
    • 1
  1. 1.Centro de Investigación en Materiales AvanzadosChihuahuaMexico
  2. 2.Universidad Tecnológica de QuerétaroQuerétaroMexico
  3. 3.UVM EducaciónTlaquepaqueMéxico

Personalised recommendations