On the Throughput of the Scheduler for Virtualization of Links

  • Andrzej ChydzinskiEmail author
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 343)


We deal with the scheduler for virtualization of links. The scheduler switches the service of the physical link between virtual links in constant time intervals, thus providing the isolation of the performance between virtual links. Most important characteristics of this scheduler are the throughput and delay of created virtual links. In this paper we demonstrate how the throughput of a virtual link can be controlled either by the virtual link buffer or the virtual link work phase.


Scheduler Queue Virtualization of links Buffer size Work phase 



This is an extended version of the paper [23] presented during International Conference on Applications of Computer Engineering in Lisbon, October 2014.


  1. 1.
    Mosharaf Kabir Chowdhury, N.M., Boutaba, R.: A survey of network virtualization. Comput. Netw. 54(5), 862–876 (2010)Google Scholar
  2. 2.
    Anderson, T., Peterson, L., Shenker, S., Turner, J.: Overcoming the internet impasse through virtualization. Computer 38(4), 34–41 (2005)CrossRefGoogle Scholar
  3. 3.
    Galis, A., et al.: Management and Service-Aware Networking Architectures (MANA) for Future Internet. System Functions, Capabilities and Requirements, Position Paper, Version V6.0, 3 May 2009Google Scholar
  4. 4.
    Burakowski, W., Tarasiuk, H., Beben, A., Goralski, W., Wisniewski, P.: Ideal device supporting virtualization of network infrastructure in system IIP (in Polish). In: Proceedings of KSTiT ’11, Lodz, 14–16 September 2011, pp. 818–823Google Scholar
  5. 5.
    Burakowski, W., Tarasiuk, H., Beben, A., Danilewicz, G.: Virtualized network infrastructure supporting co-existence of parallel internets. In: Proceedings of SNPD ’12, Kyoto, 8–10 August 2012, pp. 679–684Google Scholar
  6. 6.
    Chydzinski, A., Rawski, M., Wisniewski, P., Adamczyk, B., Olszewski, I., Szotkowski, P., Chrost, L., Tomaszewicz, P., Parniewicz, D.: Virtualization devices for prototyping of Future Internet. In: Proceedings of SNPD ’12, Kyoto, 8–10 August 2012, pp. 672–678Google Scholar
  7. 7.
    Sosnowski, M., Burakowski, W.: Analysis of the system with vacations under Poissonian input stream and constant service times. In: Proceedings of Polish Teletraffic Symposium, Zakopane, 6–7 December 2012, pp. 9–13Google Scholar
  8. 8.
    Chydzinski, A., Adamczyk, B.: Analysis of a scheduler for virtualization of links with performance isolation. Appl. Math. Inf. Sci. 8(6), 2653–2666 (2014)CrossRefGoogle Scholar
  9. 9.
    Katayama, T.: Waiting time analysis for a queueing system with time-limited service and exponential timer. Nav. Res. Logist. 48(7), 638–651 (2001)zbMATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Takagi, H.: Queueing Analysis - Vacation and Priority Systems. North-Holland, Amsterdam (1991)Google Scholar
  11. 11.
    Tian, N., Zhang, Z.G.: Vacation Queueing Models - Theory and Applications. Springer, New York (2006)zbMATHGoogle Scholar
  12. 12.
    Doshi, B.T.: Queueing systems with vacation: A survey. Queueing Syst. 1, 29–66 (1986)zbMATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Ke, J.C., Wu, C.H., Zhang, Z.G.: Recent developments in vacations queueing models: A short survey. Int. J. Oper. Res. 7(4), 3–8 (2010)Google Scholar
  14. 14.
    Hur, S., Ahn, S.: Batch arrival queues with vacations and server setup. Appl. Math. Model. 29(12), 1164–1181 (2005)zbMATHCrossRefGoogle Scholar
  15. 15.
    Gupta, U.C., Sikdar, K.: Computing queue length distributions in MAP/G/1/N queue under single and multiple vacation. Appl. Math. Comput. 174, 1498–1525 (2006)zbMATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Wu, J., Liu, Z., Peng, Y.: On the BMAP/G/1 G-queues with second optional service and multiple vacations. Appl. Math. Model. 33(12), 4314–4325 (2009)zbMATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Chung, S.-P., Chen, V.: Performance of power efficient wake-up mechanisms for mobile multimedia communication with bursty traffic. In: Proceedings of the 5th WSEAS International Conference on Data Networks, Communications & Computers, Bucharest, pp. 51–56 (2006)Google Scholar
  18. 18.
    Ho, J.-H.: A carrier fragmentation aware CSMA/ID MAC protocol for IP over WDM ring networks. WSEAS Trans. Commun. 4(9), 271–280 (2010)Google Scholar
  19. 19.
    Liu, D., Xu, G., Mastorakis, N.E.: Reliability analysis of a deteriorating system with delayed vacation of repairman. WSEAS Trans. Syst. 12(10), 413–424 (2011)Google Scholar
  20. 20.
    Chydzinski, A.: Duration of the buffer overflow period in a batch arrival queue. Perform. Eval. 63(4–5), 493–508 (2006)CrossRefGoogle Scholar
  21. 21.
    Chydzinski, A.: Transient analysis of the MMPP/G/1/K queue. Telecommun. Syst. 32(4), 247–262 (2006)CrossRefGoogle Scholar
  22. 22.
    Chydzinski, A., Chrost, L.: Analysis of AQM queues with queue-size based packet dropping. Int. J. Appl. Math. Comput. Sci. 21(3), 567–577 (2011)zbMATHMathSciNetCrossRefGoogle Scholar
  23. 23.
    Chydzinski, A.: Controlling the throughput of virtual links with performance isolation. In: Proceedings on International Conference on Applications of Computer Engineering (ACE ’14), Lisbon, October 2014, pp. 13–18Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Institute of InformaticsSilesian University of TechnologyGliwicePoland

Personalised recommendations