Advertisement

Computer Simulation of Emission and Absorption Spectra for LH2 Ring

  • Pavel HeřmanEmail author
  • David Zapletal
Chapter
  • 726 Downloads
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 343)

Abstract

Computer simulation of absorption and steady state fluorescence spectra for molecular system is presented. We focus on the B850 ring from peripheral cyclic antenna unit LH2 of the bacterial photosystem from purple bacteria. Uncorrelated static disorder in radial positions of molecules on the ring is taking into account in our simulations. We consider also influence of dynamic disorder, interaction with phonon bath, in Markovian approximation. Spectral responses are calculated by the cumulant-expansion method of Mukamel et al. Procedure in Fortran was created for calculation of single ring spectra within full Hamiltonian model. These new results are compared with our previous ones (within the nearest neighbour approximation model) that were obtained by software package Mathematica.

Keywords

B850 ring from LH2 Static disorder in radial positions of molecules Dynamic disorder Fluorescence spectrum Absorption spectrum 

Notes

Acknowledgments

This work was supported in part by the Faculty of Science, University of Hradec Králové—specific research project no. 2106/2014.

References

  1. 1.
    van Grondelle, R., Novoderezhkin, V.I.: Energy transfer in photosynthesis: experimental insights and quantitative models. Phys. Chem. Chem. Phys. 8, 793–807 (2003)CrossRefGoogle Scholar
  2. 2.
    McDermott, G., Prince, S.M., Freer, A.A., Hawthornthwaite-Lawiess, A.M., Papiz, M.Z., Cogdell, R.J., Isaacs, N.: Crystal structure of an integral membrane light harvesting complex from photosynthetic bacteria. Nature 374, 517–521 (1995)CrossRefGoogle Scholar
  3. 3.
    Papiz, M.Z., Prince, S.M., Howard, T., Cogdell, R.J., Isaacs, N.W.: The structure and thermal motion of the B800-850 LH2 complex from Rps. acidophila at 2.0 Ǻ over-circle resolution and 100 K: new structural features and functionally relevant motions. J. Mol. Biol. 326, 1523–1538 (2003)CrossRefGoogle Scholar
  4. 4.
    de Ruijter, W., Oellerich, S., Segura, J.-M., Lawless, A., Papiz, M., Aartsma, T.: Observation of the energy level structure of the low-light adapted B800 LH4 complex by single-molecule spectroscopy. Biophys. J. 87(5), 3413–3420 (2004)CrossRefGoogle Scholar
  5. 5.
    Kumble, R., Hochstrasser, R.: Disorder-induced exciton scattering in the light-harvesting systems of purple bacteria: influence on the anisotropy of emission and band → band transitions. J. Chem. Phys. 109, 855–865 (1998)CrossRefGoogle Scholar
  6. 6.
    Nagarajan, V., Alden, R., Williams, J., Parson, W.: Ultrafast exciton relaxation in the B850 antenna complex of Rhodobacter sphaeroides. Proc. Natl. Acad. Sci. U. S. A. 93(24), 13774–13779 (1996)CrossRefGoogle Scholar
  7. 7.
    Nagarajan, V., Johnson, E.T., Williams, J.C., Parson, W.W.: Femtosecond pump-probe spectroscopy of the B850 antenna complex of Rhodobacter sphaeroides at room temperature. J. Phys. Chem. B 103, 2297–2309 (1999)CrossRefGoogle Scholar
  8. 8.
    Nagarajan, V., Parson, W.W.: Femtosecond fluorescence depletion anisotropy: application to the B850 antenna complex of Rhodobacter sphaeroides. J. Phys. Chem. B 104, 4010–4013 (2000)CrossRefGoogle Scholar
  9. 9.
    Čápek, V., Barvík, I., Heřman, P.: Towards proper parametrization in the exciton transfer and relaxation problem: dimer. Chem. Phys. 270, 141–156 (2001)CrossRefGoogle Scholar
  10. 10.
    Heřman, P., Barvík, I.: Towards proper parametrization in the exciton transfer and relaxation problem II. Trimer. Chem. Phys. 274, 199–217 (2001)CrossRefGoogle Scholar
  11. 11.
    Heřman, P., Barvík, I., Urbanec, M.: Energy relaxation and transfer in excitonic trimer. J. Lumin. 108, 85–89 (2004)CrossRefGoogle Scholar
  12. 12.
    Heřman, P., Kleinekathöfer, U., Barvík, I., Schreiber, M.: Exciton scattering in light-harvesting systems of purple bacteria. J. Lumin. 94–95, 447–450 (2001)Google Scholar
  13. 13.
    He Heřman, P., Kleinekathöfer, U., Barvík, I., Schreiber, M.: Influence of static and dynamic disorder on the anisotropy of emission in the ring antenna subunits of purple bacteria photosynthetic systems. Chem. Phys. 275, 1–13 (2002)CrossRefGoogle Scholar
  14. 14.
    Heřman, P., Barvík, I.: Non-Markovian effects in the anisotropy of emission in the ring antenna subunits of purple bacteria photosynthetic systems. Czech. J. Phys. 53, 579–605 (2003)CrossRefGoogle Scholar
  15. 15.
    Heřman, P., Barvík, I.: Temperature dependence of the anisotropy of fluorescence in ring molecular systems. J. Lumin. 122–123, 558–561 (2007)Google Scholar
  16. 16.
    Heřman, P., Zapletal, D., Barvík, I.: Lost of coherence due to disorder in molecular rings. Phys. Stat. Sol. C 6, 89–92 (2009)CrossRefGoogle Scholar
  17. 17.
    Heřman, P., Barvík, I.: Coherence effects in ring molecular systems. Phys. Stat. Sol. C 3, 3408–3413 (2006)CrossRefGoogle Scholar
  18. 18.
    Heřman, P., Barvík, I., Zapletal, D.: Energetic disorder and exciton states of individual molecular rings. J. Lumin. 119–120, 496–503 (2006)Google Scholar
  19. 19.
    Heřman, P., Zapletal, D., Barvík, I.: The anisotropy of fluorescence in ring units III: tangential versus radial dipole arrangement. J. Lumin. 128, 768–770 (2008)CrossRefGoogle Scholar
  20. 20.
    Heřman, P., Barvík, I., Zapletal, D.: Computer simulation of the anisotropy of fluorescence in ring molecular systems: tangential vs. radial dipole arrangement. In: Bubak, M., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) Computational science—ICCS 2008. LNCS, vol. 5101, pp. 661–670. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  21. 21.
    Heřman, P., Zapletal, D., Barvík, I.: Computer simulation of the anisotropy of fluorescence in ring molecular systems: influence of disorder and ellipticity. In: Proceedings of IEEE 12th International Conference on Computational Science and Engineering, pp. 437–442. IEEE Computer Society (2009)Google Scholar
  22. 22.
    Heřman, P., Zapletal, D., Šlégr, J.: Comparison of emission spectra of single LH2 complex for different types of disorder. Phys. Procedia 13, 14–17 (2011)CrossRefGoogle Scholar
  23. 23.
    Heřman, P., Zapletal, D., Horák, M.: Computer simulation of steady state emission and absorption spectra for molecular ring. In: ADVCOMP2011—The Fifth International Conference on Advanced Engineering Computing and Applications in Sciences, pp. 759–762. IARIA (2011)Google Scholar
  24. 24.
    Zapletal, D., Heřman, P.: Simulation of molecular ring emission spectra: localization of exciton states and dynamics. Int. J. Math. Comp. Sim. 6, 144–152 (2012)Google Scholar
  25. 25.
    Horák, M., Heřman, P., Zapletal, D.: Simulation of molecular ring emission spectra-LH4 complex: localization of exciton states and dynamics. Int. J. Math. Comp. Sim. 7(1), 85–93 (2013)Google Scholar
  26. 26.
    Heřman, P., Zapletal, D.: Intermolecular coupling fluctuation effect on absorption and emission spectra for LH4 ring. Int. J. Math. Comp. Sim. 7(3), 249–257 (2013)Google Scholar
  27. 27.
    Horák, M., Heřman, P., Zapletal, D.: Modeling of emission spectra for molecular rings—LH2 and LH4 complexes. Phys. Procedia 44, 10–18 (2013)CrossRefGoogle Scholar
  28. 28.
    Heřman, P., Zapletal, D., Horák, M.: Emission spectra of LH2 complex: full hamiltonian model. Eur. Phys. J. B 86, Art. number 215 (2013)Google Scholar
  29. 29.
    Heřman, P., Zapletal, D.: Emission spectra of LH4 complex: full Hamiltonian model. Int. J. Math. Comp. Sim. 7(6), 249–257 (2013)Google Scholar
  30. 30.
    Heřman, P., Zapletal, D.: Simulation of emission spectra for LH4 ring: intermolecular coupling fluctuation effect. Int. J. Math. Comp. Sim. 8, 73–81 (2014)Google Scholar
  31. 31.
    Mukamel, S.: Principles of nonlinear optical spectroscopy. Oxford University Press, New York (1995)Google Scholar
  32. 32.
    Zhang, W., Chernyak, V., Mukamel, S.: Exciton-migration and three-pulse femtosecond optical spectroscopies of photosynthetic antenna complexes. J. Chem. Phys. 108(18), 7763–7774 (1998)CrossRefGoogle Scholar
  33. 33.
    Novoderezhkin, V.I., Rutkauskas, D., van Grondelle, R.: Dynamics of the emission spectrum of a single LH2 complex: interplay of slow and fast nuclear motions. Biophys. J. 90, 2890–2902 (2006)CrossRefGoogle Scholar
  34. 34.
    Redfield, A.G.: The theory of relaxation processes. Adv. Magn. Reson. 1, 1–32 (1965)CrossRefGoogle Scholar
  35. 35.
    Rutkauskas, D., Novoderezhkin, V., Cogdel, R., van Grondelle, R.: Fluorescence spectral fluctuations of single LH2 complexes from Rhodopseudomonas acidophila strain 10050. Biochemistry 43(15), 4431–4438 (2004)CrossRefGoogle Scholar
  36. 36.
    Rutkauskas, D., Novoderezhkin, V., Cogdel, R., van Grondelle, R.: Fluorescence spectroscopy of conformational changes of single LH2 complexes. Biophys. J. 88(1), 422–435 (2005)CrossRefGoogle Scholar
  37. 37.
    May, V., Kűhn, O.: Charge and energy transfer in molecular systems. Wiley, Berlin (2000)Google Scholar
  38. 38.
    Zerlauskiene, O., Trinkunas, G., Gall, A., Robert, B., Urboniene, V., Valkunas, L.: Static and dynamic protein impact on electronic properties of light-harvesting complex LH2. J. Phys. Chem. B 112, 15883–15892 (2008)CrossRefGoogle Scholar
  39. 39.
    Wolfram, S.: The Mathematica Book, 5th edn. Wolfram Media, Champaign (2003)Google Scholar
  40. 40.
    Zapletal, D., Heřman, P.: Photosynthetic complex LH2—absorption and steady state fluorescence spectra. Energy 77, 212–219 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Faculty of Science, Department of PhysicsUniversity of Hradec KrálovéHradec KrálovéCzech Republic
  2. 2.Faculty of Economics and Administration, Institute of Mathematics and Quantitative MethodsUniversity of PardubicePardubiceCzech Republic

Personalised recommendations