Advertisement

Generalized Fuzzy Measurability

  • Anca CroitoruEmail author
  • Nikos Mastorakis
Chapter
  • 711 Downloads
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 343)

Abstract

In this paper we introduce two concepts of generalized measurability for set-valued functions, namely \(\varphi\)-μ-total-measurability and \(\varphi\)-μ-measurability relative to a non-negative function \(\varphi: \mathcal{P}_{0}(X) \times \mathcal{P}_{0}(X) \rightarrow [0,+\infty )\) and a non-negative set function \(\mu: \mathcal{A}\rightarrow [0,+\infty )\) and present some relationships between them. We also define different types of convergences for sequences of set-valued functions and prove some relationships among them and a theorem of Egorov type. Finally, we introduce two semi-metrics on a space of set-valued functions and then compare them.

Keywords

Measurable Totally-measurable Set-valued function Theorem of Egorov type Almost everywhere convergent Pseudo-almost everywhere convergent Almost uniformly convergent Pseudo-almost uniformly convergent 

References

  1. 1.
    Apreutesei, G.: Families of subsets and the coincidence of hypertopologies. An. Şt. Univ. “Al. I. Cuza” Iaşi 49(1), 3–18 (2003)Google Scholar
  2. 2.
    Candeloro, D., Pucci, S.: Radon-Nikodym derivatives and conditioning in fuzzy measure theory. Stochastica XI-2,3, 107–120 (1987)Google Scholar
  3. 3.
    Chiţescu, I.: Finitely purely atomic measures: Coincidence and rigidity properties. Rendiconti Circolo Matematico Palermo Ser II, Tomo L, 455–476 (2001)Google Scholar
  4. 4.
    Choquet, G.: Theory of capacities. Ann. Inst. Fourier (Grenoble) 5, 131–292 (1953–1954)Google Scholar
  5. 5.
    Croitoru, A., Gavriluţ, A., Mastorakis, N.E., Gavriluţ, G.: On different types of non-additive set multifunctions. WSEAS Trans. Math. 8, 246–257 (2009)MathSciNetGoogle Scholar
  6. 6.
    Croitoru, A.: Set-norm continuity of set multifunctions. ROMAI J. 6, 47–50 (2010)zbMATHMathSciNetGoogle Scholar
  7. 7.
    Croitoru, A.: Fuzzy integral of measurable multifunctions. Iran. J. Fuzzy Syst. 9, 133–140 (2012)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Croitoru, A.: Strong integral of multifunctions relative to a fuzzy measure. Fuzzy Set. Syst. 244, 20–33 (2014)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Croitoru, A., Godet-Thobie, C.: Set-valued integration in seminorm I. Ann. Univ. Craiova Math. Comp. Sci. Ser. 33, 16–25 (2006)zbMATHMathSciNetGoogle Scholar
  10. 10.
    Croitoru, A., Văideanu, C.: On pointwise measurability of multifunctions. An. Şt. Univ. “Ovidius” Constanţa 17(1), 69–75 (2009)Google Scholar
  11. 11.
    Croitoru, A., Mastorakis, N.E.: Estimations, convergences and comparisons on fuzzy integrals of Sugeno, Choquet and Gould type. In: Proceedings of the 2014 IEEE International Conferences on Fuzzy Systems (FUZZ-IEEE), pp. 1205–1212. IEEE Press, New York (2014)Google Scholar
  12. 12.
    De Korvin, A., Kleyle, R.: A convergence theorem for convex set valued supermartingales. Stoch. Anal. Appl. 3, 433–445 (1985)zbMATHCrossRefGoogle Scholar
  13. 13.
    Dempster, A.P.: Upper and lower probabilities induced by a multivalued mapping. Ann. Math. Stat. 38, 325–339 (1967)zbMATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Dubois, D., Prade, H.: Fuzzy Sets and Systems. Theory and Applications. Academic, New York (1980)zbMATHGoogle Scholar
  15. 15.
    Gavriluţ, A.: Properties of regularity for multisubmeasures with respect to the Vietoris topology. An. Şt. Univ. “Al. I. Cuza” Iaşi 52, 389–400 (2006)Google Scholar
  16. 16.
    Gavriluţ, A.: Regularity and o-continuity for multisubmeasures. An. Şt. Univ. “Al. I. Cuza” Iaşi 50, 393–406 (2004)Google Scholar
  17. 17.
    Gavriluţ, A., Iosif, A.E., Croitoru, A.: The Gould integral in Banach lattices. Positivity (2014). doi: 10.10007/s11117-014-0283-7
  18. 18.
    Mastorakis, N.E.: General fuzzy systems as extensions of the Takagi-Sugeno methodology. WSEAS Trans. Syst. 3(2), 795–800 (2004)MathSciNetGoogle Scholar
  19. 19.
    Mastorakis, N.E.: Modeling dynamical systems via the Takagi-Sugeno fuzzy model. WSEAS Trans. Syst. 3(2), 668–675 (2004)MathSciNetGoogle Scholar
  20. 20.
    Mastorakis, N.E., Gavriluţ, A., Croitoru, A., Apreutesei, G.: On Darboux property of fuzzy multimeasures. In: Proceedings of the 10-th WSEAS International Conference on Fuzzy Systems (FS ’09), pp. 54–58. WSEAS Press, Prague (2009)Google Scholar
  21. 21.
    Oberguggenberger, M.: The mathematics of uncertainty: Models, methods and interpretations. In: Fellin, W., Lessman, H., Oberguggenberger, M., Veider, R. (eds.) Analyzing Uncertainty in Civil Engineering, pp. 51–72. Springer, Berlin (2005)CrossRefGoogle Scholar
  22. 22.
    Pap, E.: Null-Additive Set Functions. Kluwer Academic, Dordrecht (1995)zbMATHGoogle Scholar
  23. 23.
    Papageorgiou, N.S.: On the efficiency and optimality of allocations II. SIAM J. Control Optim. 24, 452–479 (1986)zbMATHMathSciNetCrossRefGoogle Scholar
  24. 24.
    Patriche, M.: Equilibrium of Bayesian fuzzy economies and quasi-variational inequalities with random fuzzy mappings. J. Inequal. Appl. 2013, 374 (2013)Google Scholar
  25. 25.
    Precupanu, A.M.: On the set valued additive and subadditive set functions. An. Şt. Univ. “Al. I. Cuza” Iaşi 29, 41–48 (1984)Google Scholar
  26. 26.
    Precupanu, A.M., Gavriluţ, A., Croitoru, A.: A fuzzy Gould type integral. Fuzzy Set. Syst. 161, 661–680 (2010)zbMATHCrossRefGoogle Scholar
  27. 27.
    Sambucini, A.R.: A survey on multivalued integration. Atti. Sem. Mat. Fis. Univ. Modena 50, 53–63 (2002)zbMATHMathSciNetGoogle Scholar
  28. 28.
    Satco, B.: A Vitali type theorem for the set-valued Gould integral. An. Şt. Univ. “Al. I. Cuza” Iaşi 51, 191–200 (2005)Google Scholar
  29. 29.
    Schmelzer, B.: Set-valued assessments of solutions to stochastic differential equations with random set parameters. J. Math. Anal. Appl. 400, 425–438 (2013)zbMATHMathSciNetCrossRefGoogle Scholar
  30. 30.
    Stamate, C., Croitoru, A.: Non-linear integrals, prperties and relationships. In: Recent Advances in Telecommuncations, Signals and Systems, pp. 118–123. WSEAS Press, Lemesos (2013)Google Scholar
  31. 31.
    Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)zbMATHMathSciNetCrossRefGoogle Scholar
  32. 32.
    Mesiar, R., De Baets, B.: New construction methods for aggregation operators. In: Proceedings of the IPMU ’2000, Madrid, pp. 701–707 (2000)Google Scholar
  33. 33.
    Wang, Z., Klir. G.J.: Fuzzy measure theory, Plenum Press, New York (1992)Google Scholar
  34. 34.
    Wu, C., Ren, X., Wu, C.: A note on the space of fuzzy measurable functions for a monotone measure. Fuzzy Set. Syst. 182, 2–12 (2011)zbMATHMathSciNetCrossRefGoogle Scholar
  35. 35.
    Florescu, L.C.: The Centennial of Convergence in Measure. Series Mathematics and Informatics, vol. 19, no. 2, pp. 221–240. “Vasile Alecsandri” University of Bacău (2009)Google Scholar
  36. 36.
    Sugeno, M.: Theory of fuzzy integrals and its applications. Ph.D. Thesis, Tokyo Institute of Technology (1974)Google Scholar
  37. 37.
    Tversky, A., Kahneman, D.: Advances in prospect theory: Cummulative representation of uncertainty. J. Risk Uncertain. 5, 297–323 (1992)zbMATHCrossRefGoogle Scholar
  38. 38.
    Grabisch, M.: Fuzzy integral in multicriteria decision making. Fuzzy Set. Syst. 69, 279–298 (1995)zbMATHMathSciNetCrossRefGoogle Scholar
  39. 39.
    Grabisch, M., Labreuche, C.: A decade of applications of the Choquet and Sugeno integrals in multi-criteria decision aid. 40R 6, 1–44 (2008)Google Scholar
  40. 40.
    Aletti, G., Bongiorno, E.G., Capasso, V.: Statistical aspects of fuzzy monotone set-valued stochastic processes. Application to birth-and-growth processes. Fuzzy Set. Syst. 160, 3140–3151 (2009)zbMATHMathSciNetCrossRefGoogle Scholar
  41. 41.
    Cao, Y.: Aggregating multiple classification results using Choquet integral for financial distress early warning. Expert Syst. Appl. 38(7), 8285–8292 (2011)CrossRefGoogle Scholar
  42. 42.
    Wang, Z., Yang, R., Leung, K.S.: Nonlinear integrals and their applications in data mining. In: Advances in Fuzzy Systems-Applications and Theory. World Scientific, Singapore (2010)zbMATHGoogle Scholar
  43. 43.
    Liu, W.L., Song, X.Q., Zhang, Q.Z., Zhang, S.B.: (T) Fuzzy integral of multi-dimensional function with respect to multi-valued measure. Iran. J. Fuzzy Syst. 9(3), 111–126 (2012)Google Scholar
  44. 44.
    Mahmoud, Muhammad, M.A.S., Moraru, S.: Accident rates estimation modelling based on human factors using fuzzy c-means clustering algorithm. World Acad. Sci. Eng. Technol. (WASET) 64, 1209–1219 (2012)Google Scholar
  45. 45.
    Pham, T.D., Brandl, M., Nguyen, N.D., Nguyen, T.V.: Fuzzy measure of multiple risk factors in the prediction of osteoporotic fractures. In: Proceedings of the 9-th WSEAS International Conference on Fuzzy Systems (FS ’08), pp. 171–177. WSEAS Press, Sofia (2008)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Faculty of Mathematics“Al. I. Cuza” UniversityIaşiRomania
  2. 2.Technical University of SofiaSofiaBulgaria

Personalised recommendations