Skip to main content

Self Regulation of Memory Processing Centers of the Brain

  • Chapter
  • First Online:
The Neurobiological Basis of Memory
  • 1428 Accesses

Abstract

Memory is comprised of many integrated components and functions. Decades ago, Ray Kesner presented an attribute model of memory that provided a functional architecture for memory organization in the brain. Many of the features of the model have been consistently supported by new data, and new discoveries about memory function have often been readily incorporated into the model. Current challenges, then, are to understand what makes each brain area so unique that they mediate different types of memory, and to determine how the different brain areas that process mnemonic information work together in a continuous and seemingly automatic way. The literature shows that the special mnemonic contributions could not be accounted for by unique types of neural representation in different areas of the brain. In fact most memory-related structures show movement-, reward-, and spatial-related neural discharge, although to varying degrees. Also, emerging evidence suggest that the functional consequence of the intrinsic computations of memory structures may be comparable: each may generate a prediction error signal, albeit for different types of information. Task-dependent co-modulation of population efferent codes of distant brain areas (e.g., striatum and hippocampus), however, may importantly determine strategic, memory-driven control over decisions that impact the future selection of responses. The automatic nature of memory-driven strategy switches may depend on a self-regulatory homeostatic system that allows integrative structures like the prefrontal cortex to continuously monitor and control the excitability state of neurons in different memory prediction areas of brain, and in this way enable appropriate control over future decisions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams, R. A., Shipp, S., & Friston, K. J. (2013). Predictions not commands: Active interference in the motor system. Brain Structure and Function, 218, 611–643.

    Article  PubMed Central  PubMed  Google Scholar 

  • Adolphs, R., Tranel, D., & Buchanan T. W. (2005). Amygdala damage impairs emotional memory for gist but not details of complex stimuli. Nature Neuroscience, 8, 512–518.

    Article  PubMed  Google Scholar 

  • Alexander, G. E., & Crutcher, M. D. (1990a). Functional architecture of basal ganglia circuits: Neural substrates of parallel processing. Trends in Neuroscience, 13, 266–271.

    Article  Google Scholar 

  • Alexander, G. E., & Crutcher, M. D. (1990b). Preparation for movement: Neural representations of intended direction in three motor areas of the monkey. Journal of Neurophysiology, 64, 133–150.

    PubMed  Google Scholar 

  • Alexander, G. E., DeLong, M. R., & Strick, P. L. (1986). Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annual Reviews in Neuroscience, 9, 357–381.

    Article  Google Scholar 

  • Anderson, M. I., & Jeffery, K. J. (2003). Heterogeneous modulation of place cell firing by changes in context. Journal of Neuroscience, 23, 8827–8835.

    PubMed  Google Scholar 

  • Arnsten, A. F. T. (2011). Prefrontal cortical network connections: Key site of vulnerability in stress and schizophrenia. International Journal of Developmental Neuroscience, 29, 21–223.

    Article  Google Scholar 

  • Arnsten, A. F. T., Wang, M. J., & Paspalas, C. D. (2012). Neuromodulation of thought: Flexibilities and vulnerabilities in prefrontal cortical network synapses. Neuron, 76, 223–239.

    Article  PubMed Central  PubMed  Google Scholar 

  • Baddeley, A., & Della Sala, S. (1996). Working memory and executive control. Royal Society of London B Biological Sciences, 351, 1397–1403.

    Article  Google Scholar 

  • Bayer, H. M., & Glimcher, P. W. (2005). Midbrain dopamine neurons encode a quantitative reward prediction error signal. Neuron, 47, 129–141.

    Article  PubMed Central  PubMed  Google Scholar 

  • Bayley, P.J., Frascino, J.C., & Squire, L.R. (2005). Robust habit learning in the absence of awareness and independent of the medial temporal lobe. Nature, 436, 550–553.

    Article  PubMed Central  PubMed  Google Scholar 

  • Benchenane, K., Peyrache, A., Khamassi, M., Tierney, P. L., Gioanni, Y., Battaglia, F. P., & Wiener, S. I. (2010). Coherent theta oscillations and reorganization of spike timing in the hippocampal- prefrontal network upon learning. Neuron, 66, 921–936.

    Article  PubMed  Google Scholar 

  • Berke, J. D. (2009). Fast oscillations in cortical-striatal networks switch frequency following rewarding events and stimulant drugs. European Journal of Neuroscience, 30, 848–859.

    Article  PubMed Central  PubMed  Google Scholar 

  • Berke, J. D., Okatan, M., Skurski, J., & Eichenbaum, H. B. (2004). Oscillatory entrainment of striatal neurons in freely moving rats. Neuron, 43, 883–896.

    Article  PubMed  Google Scholar 

  • Bethus, I., Tse, D., & Morris, R. G. (2010). Dopamine and memory: modulation of the persistence of memory for novel hippocampal NMDA receptor-dependent paired associates. Journal of Neuroscience, 30, 1610–1618.

    Article  PubMed  Google Scholar 

  • Burrone, J., O’Bryne, M., & Murthy V. N. 2002. Multiple forms of synaptic plasticity triggered by selective suppression of activity in individual neurons. Nature, 420, 414–419.

    Article  PubMed  Google Scholar 

  • Buzsaki, G. (2006). Rhythms of the brain. New York: Oxford Press.

    Book  Google Scholar 

  • Buzsaki, G. (2013). Time, space and memory. Nature, 497, 568–569.

    Article  PubMed  Google Scholar 

  • Buzsaki, G., & Moser, E. I. (2013). Memory, navigation and theta rhythm in the hippocampal-entorhinal system. Nature Neuroscience, 16, 130–138.

    Article  PubMed Central  PubMed  Google Scholar 

  • Cagniard, B., Beeler, J. A., Britt, J. P., McGhee, D. S., Marinelli, M., & Zhuang, X. (2006). Dopamine scales performance in the absence of new learning. Neuron, 51, 541–547.

    Article  PubMed  Google Scholar 

  • Calhoon, G. G., & O’Donnell, P. (2013). Closing the gate in the limbic striatum: Prefrontal suppression of hippocampal and thalamic inputs. Neuron, 78, 181–190.

    Article  PubMed Central  PubMed  Google Scholar 

  • Chau, L. S., & Galvez, R. (2012). Amygdala’s involvement in facilitating associative learning-induced plasticity: A promiscuous role for hte amygdala in memory acquisition. Frontiers in Integrative Neuroscience, 6, 92.

    Article  PubMed Central  PubMed  Google Scholar 

  • Chen, J., Olsen, R. K., Preston, A. R., Glover, G. H., & Wagner A. D. (2011). Associative retrieval processes in the human medial temporal lobe: Hippocampal retrieval success and CA1 mismatch detection. Learning and Memory, 18, 523–528.

    Article  PubMed Central  PubMed  Google Scholar 

  • Chiba, A. A., Kesner, R. P., & Jackson, P. (2002). Two forms of spatial memory: A double dissociation between the parietal cortex and the hippocampus in the rat. Behavioral Neuroscience, 116, 874–883.

    Article  PubMed  Google Scholar 

  • Ciocchi, S., Herry, C., Grenier, F., Wolff, S. B., Letzkus, J. J., Vlachos, I., Ehrlich, I., Sprengel, R., Deisseroth, K. I., Stadler, M. B., Muller, C., & Luthi, A. (2010). Encoding of conditioned fear in central amygdala inhibitory circuits. Nature, 468, 277–282.

    Article  PubMed  Google Scholar 

  • Curtis, C. E., Rao, V. Y., & E’Esposito, M. (2004). Maintenance of spatial and motor codes during oculomotor delayed response tasks. Journal of Neuroscience, 24, 3944–3952.

    Article  PubMed  Google Scholar 

  • DeCoteau, W. E., Thorn, C., Gibson, D. J., Courtemanche, R., Mitra, P., Kubota, Y., & Graybiel, A. M. (2007a). Learning-related coordination of striatal and hippocampal theta rhythms during acquisition of a procedural maze task. Proceedings of the National Academy of Science U S A, 104, 5644–5649.

    Article  Google Scholar 

  • DeCoteau, W. E., Thorn, C., Gibson, D. J., Courtemanche, R., Mitra, P., Kubota, Y., & Graybiel, A. M. (2007b). Oscillations of local field potentials in the rat dorsal striatum during spontaneous and instructed behaviors. Journal of Neurophysiology, 97, 3800–3805.

    Article  PubMed  Google Scholar 

  • Dickerson, K. C., Li, J., & Delgado, M. R. (2011). Parallel contributions of distinct human memory systems during probabilistic learning. Neuroimage, 55, 266–276.

    Article  PubMed Central  PubMed  Google Scholar 

  • Diwadkar, V. A., Carpenter, P. A., & Just, M. A. (2000). Collaborative activity between parietal and dorso-lateral prefrontal cortex in dynamic spatial working memory revealed by fMRI. Neuroimage, 12, 85–99.

    Article  PubMed  Google Scholar 

  • Doll, B. B., Simon, D. A., & Daw, N. D. (2012). The ubiquity of model-based reinforcement learning. Current Opinion in Neurobiology, 22, 1075–1081.

    Article  PubMed Central  PubMed  Google Scholar 

  • Duhamel, J. R., Colby, C. L., & Goldberg, M. E. (1992). The updating of the representation of visual space in parietal cortex by intended eye movements. Science, 255, 90–92.

    Article  PubMed  Google Scholar 

  • Duncan, K., Ketz, N., Inati, S. J., & Davachi, L. (2012a). Evidence for area CA1 as a match/mismatch detector: A high-resolution fMRI study of the human hippocampus. Hippocampus, 22, 389–398.

    Article  PubMed Central  PubMed  Google Scholar 

  • Duncan, K., Sadanand, A., & Davachi, L. (2012b). Memory’s penumbra: Episodic memory decisions induce lingering mnemonic biases. Science, 337, 485–487.

    Article  PubMed Central  PubMed  Google Scholar 

  • Engel, A. K., Fries, P., & Singer, W. (2001). Dynamic predictions: Oscillations and synchrony in top-down processing. Nature Reviews in Neuroscience, 2, 704–716.

    Article  PubMed  Google Scholar 

  • Eschenko, O., & Mizumori, S. J.Y. (2007). Memory influences on hippocampal and striatal neural codes: Effects of a shift between task rules. Neurobiology of Learning and Memory, 87, 495–509.

    Article  PubMed  Google Scholar 

  • Fell, J., Klaver, P., Lehnertz, K., Grunwald, T., Schaller, C., Elger, C. E., & Fernandez, G. (2001). Human memory formation is accompanied by rhinal-hippocampal coupling and decoupling. Nature Neuroscience, 4, 1259–1264.

    Article  PubMed  Google Scholar 

  • Ferbinteanu, J., & Shapiro, M. L. (2003). Prospective and retrospective memory coding in the hippocampus. Neuron, 40, 1227–1239.

    Article  PubMed  Google Scholar 

  • Foerde, K., & Shohamy, D. (2011). Feedback timing modulates brain systems for learning in humans. Journal of Neuroscience, 31, 13157–13167.

    Article  PubMed Central  PubMed  Google Scholar 

  • Fogassi, L., Ferrari, P. F., Gesierich, B., Rozzi, S., Chersi, F., & Rizzolatti, G. (2005). Parietal lobe: From action organization to intention understanding. Science, 308, 662–667.

    Article  PubMed  Google Scholar 

  • Froemke, R. C., Merzenich, M. M., & Schreiner, C. E. (2007). A synaptic memory trace for cortical receptive field plasticity. Nature, 450, 425–429.

    Article  PubMed  Google Scholar 

  • Fuster, J. M. (2006). The cognit: A network model of cortical representation. International Journal of Psychophysiology, 60, 125–132.

    Article  PubMed  Google Scholar 

  • Fuster, J. M. (2008). The prefrontal cortex (4th ed.). London: Academic Press.

    Google Scholar 

  • Fuster, J. M. (2009). Cortex and memory: Emergence of a new paradigm. Journal of Cognitive Neuroscience, 21, 2047–2072.

    Article  PubMed  Google Scholar 

  • Fyhn, M., Molden, S., Hollup, S., Moser, M. B., & Moser E. (2002). Hippocampal neurons responding to first-time dislocation of a target object. Neuron, 35, 555–566.

    Article  PubMed  Google Scholar 

  • Gengler, S., Mallot, H. A., & Holscher C. (2005). Inactivation of the rat dorsal striatum impairs performance in spatial tasks and alters hippocampal theta in the freely moving rat. Behavioral Brain Research, 164, 73–82.

    Article  Google Scholar 

  • Gilbert, P. E., & Kesner, R. P. (2002). The amygdala but not the hippocampus is involved in pattern separation based on reward value. Neurobiology of Learning and Memory, 77, 338–353.

    Article  PubMed  Google Scholar 

  • Goldman-Rakic, P. S. (1995). Cellular basis of working memory. Neuron, 14, 477–485.

    Article  PubMed  Google Scholar 

  • Goldman-Rakic, P. S. (1996). The prefrontal landscape: Implications of functional architecture for understanding human mentation and the central executive. Philosophical Translation of the Royal Society of London B Biological Sciences, 351, 1445–1453.

    Article  Google Scholar 

  • Good, M., & Honey, R. C. (1991). Conditioning and contextual retrieval in hippocampal rats. Behavioral Neuroscience, 105, 499–509.

    Article  PubMed  Google Scholar 

  • Gray, J. A. (1982). The neuropsychology of anxiety: An enquiry into the functions of the septo-hippocampal system. Oxford: Oxford University Press.

    Google Scholar 

  • Gray, J. A. (2000). The neuropsychology of anxiety: An enquiry into the functions of the septo-hippocampal system (2nd ed.). Oxford: Oxford University Press.

    Google Scholar 

  • Graybiel, A. M. (2008) Habits, rituals, and the evaluative brain. Annual Review in Neuroscience, 31, 359–387.

    Article  Google Scholar 

  • Graybiel, A. M., Aosaki, T., Flaherty, A. W., & Kimura, M. (1994). The basal ganglia and adaptive motor control. Science, 265, 1826–1831.

    Article  PubMed  Google Scholar 

  • Groenewegen, H. J., Galis-de Graaf, Y., & Smeets, W. J. (1999). Integration and segregation of limbic cortico-striatal loops at the thalamic level: An experimental tracing study in rats. Journal of Chemical Neuroanatomy, 16, 167–185.

    Article  PubMed  Google Scholar 

  • Haber, S. N. (2003). The primate basal ganglia: Parallel and integrative networks. Journal of Chemical Neuroanatomy, 26, 317–330.

    Article  PubMed  Google Scholar 

  • Hallworth, N. E., & Bland, B. H. (2004). Basal ganglia—hippocampal interactions support the role of the hippocampal formation in sensorimotor integration. Experimental Neurology, 188, 430–443.

    Article  PubMed  Google Scholar 

  • Hasselmo, M. E. (2005a). What is the function of hippocampal theta rhythm?–Linking behavioral data to phasic properties of field potential and unit recording data. Hippocampus, 15, 936–949.

    Article  PubMed  Google Scholar 

  • Hasselmo, M. E. (2005b). The role of hippocampal regions CA3 and CA1 in matching entorhinal input with retrieval of associations between objects and context: Theoretical comment on Lee et al. (2005). Behavioral Neuroscience, 119, 342–345.

    Article  PubMed  Google Scholar 

  • Hasselmo, M. E., Hay, J., Ilyn, M., & Gorchetchnikov, A. (2002). Neuromodulation, theta rhythm and rat spatial navigation. Neural Networks, 15, 689–707.

    Article  PubMed  Google Scholar 

  • Haubensak, W., Kunwar, P. S., Cai, H., Ciocchi, S., Wall, N. R., Ponnusamy, R., Biag, J., Dong, H. W., Deisseroth, K., Callaway, E. M., Fanselow, M. S., Lüthi, A., & Anderson, D. J. (2010). Genetic dissection of an amygdala microcircuit that gates conditioned fear. Nature, 468, 270–276

    Article  PubMed Central  PubMed  Google Scholar 

  • Holland, P. C., & Gallagher, M. (2006). Different roles for amygdala central nucleus and substantia innominate in the surprise-induced enhancement of learning. Journal of Neuroscience, 26, 3791–3797.

    Article  PubMed  Google Scholar 

  • Hollerman, J. R., & Schultz, W. (1998). Dopamine neurons report an error in the temporal prediction of reward during learning. Nature Neuroscience, 1, 304–309.

    Article  PubMed  Google Scholar 

  • Hollerman, J. R., Tremblay, L., & Schultz, W. (1998) Influence of reward expectation on behavior-related neuronal activity in primate striatum. Journal of Neurophysiology, 80, 947–963.

    PubMed  Google Scholar 

  • Holroyd, C. B., Coles, M. G., & Nieuwenhuis, S. (2002). Medial prefrontal cortex and error potentials. Science, 29(6), 1610–1611.

    Article  Google Scholar 

  • Hopkins, R. O., Kesner, R. P., & Goldstein, M. (1995). Memory for novel and familiar temporal spatial and linguistic temporal distance information in hypoxic subjects. International Journal of Neuropsychology, 1, 454–468.

    Article  Google Scholar 

  • Hopkins, R. O., Waldram, K., & Kesner, R. P. (2004). Sequences assessed by declarative and procedural tests of memory in amnesic patients with hippocampal damage. Neuropsychologia, 42, 1877–1886.

    Article  PubMed  Google Scholar 

  • Horvitz, J. C. (2002). Dopamine gating of glutamatergic sensorimotor and incentive motivational input signals to the striatum. Behavioral Brain Research, 137, 65–74.

    Article  Google Scholar 

  • Humphries, M. D., & Prescott, T. J. (2010). The ventral basal ganglia, a selection mechanism at the crossroads of space, strategy, and reward. Progress in Neurobiology, 90, 385–417.

    Article  PubMed  Google Scholar 

  • Hyman, J. M., Zilli, E. A., Paley, A. M., & Hasselmo, M. E. (2005). Medial prefrontal cortex cells show dynamic modulation with the hippocampal theta rhythm dependent on behavior. Hippocampus, 15, 739–749.

    Article  PubMed  Google Scholar 

  • Jeffery, K. J., Anderson, M. I., Hayman, R., & Chakraborty, S. (2004). A proposed architecture for the neural representation of spatial context. Neuroscience and Biobehavioral Review, 28, 201–218.

    Article  Google Scholar 

  • Jenkins, T. A., Amin, E., Pearce, J. M., Brown, M. W., & Aggleton. J. P. (2004). Novel spatial arrangements of familiar visual stimuli promote activity in the rat hippocampal formation but not the parahippocampal cortices: A c-fos expression study. Neuroscience, 124, 43–52.

    Article  PubMed  Google Scholar 

  • Jo, Y. S., Lee, J., & Mizumori, S. J. Y. (2013). Effects of prefrontal cortical inactivation on neural activity in the ventral tegmental area. Journal of Neuroscience, 33, 8159–8171.

    Article  PubMed Central  PubMed  Google Scholar 

  • Jog, M. S., Kubota, Y., Connolly, C. I., Hillegaart, V., & Graybiel, A. M. (1999). Building neural representations of habits. Science, 286, 1745–1749.

    Article  PubMed  Google Scholar 

  • Johansen, J. P., Cain, C. K., Ostroff, L. E., & LeDoux, J. E. (2011). Molecular mechanisms of fear learning and memory. Cell, 147, 509–524.

    Article  PubMed Central  PubMed  Google Scholar 

  • Jones, M. W., & Wilson, M. A. (2005). Theta rhythms coordinate hippocampal-prefrontal interactions in a spatial memory task. PLoS Biology, 3, e402.

    Article  PubMed Central  PubMed  Google Scholar 

  • Khan, Z. U., & Muly, E. C. (2011). Molecular mechanisms of working memory. Behavioral and Brain Research, 219, 329–341.

    Article  Google Scholar 

  • Kalenscher, T., Lansink, C. S., Lankelma, J. V., & Pennartz, C. M. (2010). Reward-associated gamma oscillations in ventral striatum are regionally differentiated and modulate local firing activity. Journal of Neurophysiology, 103, 1658–1672.

    Article  PubMed  Google Scholar 

  • Kametani, H., & Kesner, R. P. (1989). Retrospective and prospective coding of information: Dissociation of parietal cortex and hippocampal formation. Behavioral Neuroscience, 103, 84–89.

    Article  PubMed  Google Scholar 

  • Karlsson, M. P., Tervo, D. G. R., & Karpova, A. Y. (2012). Network resets in medial prefrontal cortex mark the onset of behavioral uncertainty. Science, 338, 135–139.

    Article  PubMed  Google Scholar 

  • Kesner, R. P. (1980). An attribute analysis of memory: The role of the hippocampus. Physiology Psychology, 8, 189–197.

    Article  Google Scholar 

  • Kesner, R. P. (1989). Retrospective and prospective coding of information: Role of the medial prefrontal cortex. Journal of Experimental Brain Research, 74, 163–167.

    PubMed  Google Scholar 

  • Kesner, R. P. (1998). Neurobiological views of memory. In J. L. Martinez & R. P. Kesner (Eds.), The neurobiology of learning and memory (pp. 361–416). San Diego: Academic.

    Chapter  Google Scholar 

  • Kesner, R.P. (2009). Tapestry of memory. Behavioral Neuroscience, 123, 1–13.

    Article  PubMed  Google Scholar 

  • Kesner, R.P., & DiMattia, B.V. (1987). Neurobiology of an attribute model of memory. In A. R. Morrison & A. N. Epstein (Eds.), Progress in psychobiology and physiological psychology (pp. 207–277). New York: Academic.

    Google Scholar 

  • Kesner, R. P., & Hopkins, R. O. (2001). Short-term memory for duration and distance in humans: Role of the hippocampus. Neuropsychology, 15, 58–68.

    Article  PubMed  Google Scholar 

  • Kesner, R. P., & Hopkins, R. O. (2006). Mnemonic functions of the hippocampus: A comparison between animals and humans. Biological Psychology, 73, 3–18.

    Article  PubMed  Google Scholar 

  • Kesner, R.P., & Rogers, L. (2004). An analysis of independence and interactions of brain substrates that subserve multiple attributes, memory systems, and underlying processes. Neurobiology of Learning and Memory, 82, 199–215.

    Article  PubMed  Google Scholar 

  • Kesner, R. P., & Williams, J. M. (1995). Memory for magnitude of reinforcement: Dissociation between the amygdala and hippocampus. Neurobiology of Learning and Memory, 64, 237–244

    Article  PubMed  Google Scholar 

  • Kesner, R. P., Farnsworth, G., & DiMattia, B. V. (1989). Double dissociation of egocentric and allocentric space following medial prefrontal and parietal cortex lesions in the rat. Behavioral Neuroscience, 103, 956–961.

    Article  PubMed  Google Scholar 

  • Kesner, R. P., Bolland, B., & Dakis, M. (1993). Memory for spatial locations, motor responses, and objects: Triple dissociations among the hippocampus, caudate nucleus and extrastriate visual cortex. Experimental Brain Research, 93, 462–470.

    Article  PubMed  Google Scholar 

  • Knowlton, B. J., Mangels, J. A., & Squire, L.R. (1996). A neostriatal habit learning system in humans. Science, 273, 1399–1402.

    Article  PubMed  Google Scholar 

  • Kraus, B. J., Robinson II, R. J., White, J. A., Eichenbaum, H., & Hasselmo, M. E. (2013). Hippocampal “time cells”: Time versus path integration. Neuron, 78, 1–12.

    Article  Google Scholar 

  • Kropf, W., & Kuschinsky, K. (1993). Conditioned effects of apomorphine are manifest in regional EEG of rats both in hippocampus and in striatum. Naunyn-Schmiedeberg’s Archives of Pharmacology, 347, 487–493.

    Article  Google Scholar 

  • Kuhl, B. A., Shah, A. T., DuBrow, S., & Wagner AD. (2010). Resistance to forgetting associated with hippocampus-mediated reactivation during new learning. Nature Neuroscience, 13, 501–506.

    Article  PubMed Central  PubMed  Google Scholar 

  • Kumaran, D., & Maguire, E. A. (2007). Match-mismatch processes underlie human hippocampal responses to associative novelty. Journal of Neuroscience, 27, 8517–8524.

    Article  PubMed Central  PubMed  Google Scholar 

  • Kurkin, S., Akao, T., Shichinohe, N., Fukushima, J., & Fukushima, K. (2011). Neuronal activity in medial superior temporal area (MST) during memory-based smooth pursuit eye movements in monkeys. Experimental Brain Research, 214, 293–301.

    Article  PubMed Central  PubMed  Google Scholar 

  • Kurth-Nelson, Z., & Redish A. D. (2009). Temporal-difference reinforcement learning with distributed representations. PLoS One, 4, 37362.

    Article  Google Scholar 

  • Lee, H. J., Groshek, F., Petrovich, G. D., Cantalini, J. P., Gallagher, M., & Holland, P. C. (2005). Role of amygdalo-nigral circuitry in conditioning of a visual stimulus paired with food. Journal of Neuroscience, 25, 3881–3888.

    Article  PubMed Central  PubMed  Google Scholar 

  • Lee, H. J., Youn, J. M., Gallagher, M., & Holland, P. C. (2008). Temporally limited role of substantia nigra-central amygdala connections in surprise-induced enhancement of learning. European Journal of Neuroscience, 27, 3043–3049.

    Article  PubMed Central  PubMed  Google Scholar 

  • Leutgeb, J. K., Leutgeb, S., Treves, A., Meyer, R., Barnes, C. A., McNaughton, B. L., Moser, M. B., & Moser, E. I. (2005a). Progressive transformation of hippocampal neuronal representations in “morphed” environments. Neuron, 48, 345–358.

    Article  PubMed  Google Scholar 

  • Leutgeb, S., Leutgeb, J. K., Barnes, C. A., Moser, E. I., McNaughton, B. L., & Moser, M. B. (2005b). Independent codes for spatial and episodic memory in hippocampal neuronal ensembles. Science, 309, 619–623.

    Article  PubMed  Google Scholar 

  • Levy, R., Friedman, H. R., Davachi, L., & Goldman-Rakic, P. S. (1997). Differential activation of the caudate nucleus in primates performing spatial and nonspatial working memory tasks. Journal of Neuroscience, 17, 3870–3882.

    PubMed  Google Scholar 

  • Li, H., Penzo, M. A., Taniguchi, H., Kopec, C. D., Huang, Z. J., & Li, B. (2013). Experience-dependent modification of a central amygdala fear circuit. Nature Neuroscience, 16, 332–329.

    Article  PubMed Central  PubMed  Google Scholar 

  • Lisman, J. E., & Grace, A. A. (2005). The hippocampal-VTA loop: Controlling the entry of information into long-term memory. Neuron, 46, 703–713.

    Article  PubMed  Google Scholar 

  • Lisman, J. E., & Otmakhova, N. A. (2001). Storage, recall, and novelty detection of sequences by the hippocampus: Elaborating on the SOCRATIC model to account for normal and aberrant effects of dopamine. Hippocampus, 11, 551–568.

    Article  PubMed  Google Scholar 

  • Llinas, R. R., & Roy, S. (2009). The ‘predictive imperative’ as the basis for self-awareness. Philosophical Transactions of the Royal Society B Biological Sciences, 364, 1301–1307.

    Article  PubMed Central  Google Scholar 

  • Manns, J. R., Howard, M. W., & Eichenbaum, H. (2007a). Gradual changes inhippocampal activity support remembering the order of events. Neuron, 56, 530–540.

    Article  PubMed Central  PubMed  Google Scholar 

  • Manns, J. R., Zilli, E. A., Ong, K. C., Hasselmo, M. E., & Eichenbaum, H. (2007b). Hippocampal CA1 spiking during encoding and retrieval: Relation to theta phase. Neurobiology Learning Memory, 87, 9–20.

    Article  Google Scholar 

  • Marder, E., & Goaillard, J. M. (2006). Variability, compensation and homeostasis in neuron and network function. Nature Reviews Neuroscience, 7, 563–574.

    Article  PubMed  Google Scholar 

  • Marder, E., & Prinz, A. A. (2003). Current compensation in neuronal homeostasis. Neuron, 37, 2–4.

    Article  PubMed  Google Scholar 

  • Mauk, M. D., & Buonomano, D. V. (2004). The neural basis of temporal processing. Annual Reviews in Neuroscience, 27, 307–340.

    Article  Google Scholar 

  • McDonald, R. J., & White, N. M. (1993). A triple dissociation of memory systems: Hippocampus, amygdala and dorsal striatum. Behavioral Neuroscience, 107, 371–388.

    Article  Google Scholar 

  • McNaughton, B. L., Barnes, C. A., & O’Keefe, J. (1983). The contributions of position, direction, and velocity to single unit activity in the hippocampus of freely-moving rats. Experimental Brain Research, 52, 41–49.

    Article  PubMed  Google Scholar 

  • McNaughton, B. L., Mizumori, S. J., Barnes, C. A., Leonard, B. J., Marquis, M., & Green, E. J. (1994). Cortical representation of motion during unrestrained spatial navigation in the rat. Cerebral Cortex, 4, 26–39.

    Article  Google Scholar 

  • Meftah, E.-M, Bourgeon, S., & Chapman, C. E. (2009). Instructed delay discharge in primary and secondary somatosensory cortex within the context of a selective attention task. Journal of Neurophysiology, 101, 2649–2667.

    Article  Google Scholar 

  • Merchant H., Crowe, D. A., Robertson, M. S., Fortes, A. F., & Georgopoulos, A. P. (2011). Top-down spatial categorization signal from prefrontal to posterior parietal cortex in the primate. Frontiers in Systems Neuroscience, 5, 1–9.

    Article  Google Scholar 

  • Milner, B. (2005). The medial temporal-lobe amnesic syndrome. Psychiatry Clinical North America, 28, 599–611.

    Article  Google Scholar 

  • Mizumori, S. J. Y. (2008a). A context for hippocampal place cells during learning. In S. J. Y. Mizumori (Ed.), Hippocampal place fields: Relevance to learning and memory (pp. 16–43). New York: Oxford University Press.

    Chapter  Google Scholar 

  • Mizumori, S. J. Y. (2008b). Hippocampal place fields: Relevance to learning and memory. New York: Oxford University Press.

    Book  Google Scholar 

  • Mizumori, S. J. Y., & Jo, Y. S. (2013). Homeostatic regulation of memory systems and adaptive decisions. Hippocampus, 23(11), 1103–1124.

    Article  PubMed Central  PubMed  Google Scholar 

  • Mizumori, S. J. Y., Ragozzino, K. E., Cooper, B. G., & Leutgeb, S. (1999). Hippocampal representational organization and spatial context. Hippocampus, 9, 444–451.

    Article  PubMed  Google Scholar 

  • Mizumori, S. J. Y., Cooper, B. G., Leutgeb, S., & Pratt, W. E. (2000a). A neural systems analysis of adaptive navigation. Molecular Neurobiology, 21, 57–82.

    Article  PubMed  Google Scholar 

  • Mizumori, S. J. Y., Ragozzino, K. E., & Cooper, B. G. (2000b). Location and head direction representation in the dorsal striatum of rats. Psychobiology, 28, 441–462.

    Google Scholar 

  • Mizumori, S. J. Y., Yeshenko, O., Gill, K., & Davis, D. (2004). Parallel processing across neural systems: Implications for a multiple memory systems hypothesis. Neurobiology of Learning and Memory, 82, 278–298.

    Article  PubMed  Google Scholar 

  • Mizumori, S. J. Y., Smith, D.M., & Puryear, C.B. (2007a). Hippocampal and neocortical interactions during context discrimination: electrophysiological evidence from the rat. Hippocampus, 17, 851–862.

    Article  PubMed  Google Scholar 

  • Mizumori, S. J. Y., Smith, D. M., & Puryear, C. B. (2007b). A role for place representation in episodic memory. In J. L. Martinez & R. P. Kesner (Eds.), Neurobiology of learning and memory (pp. 155–189). Second Edition Burlington Massachusetts: A: Academic.

    Chapter  Google Scholar 

  • Mizumori S. J. Y., Puryear, C. B., & Martig, A. K. (2009). Basal ganglia contributions to adaptive navigation. Behavioural Brain Research, 199, 32–42.

    Article  PubMed  Google Scholar 

  • Moita, M. A., Rosis, S., Zhou, Y., LeDoux, J. E., & Blair, H. T. (2004). Putting fear in its place: Remapping of hippocampal place cells during fear conditioning. Journal of Neuroscience, 24, 7015–7023.

    Article  PubMed  Google Scholar 

  • Muller, R. U., & Kubie, J. L. (1987). The effects of changes in the environment on the spatial firing of hippocampal complex-spike cells. Journal of Neuroscience, 7, 1951–1968.

    PubMed  Google Scholar 

  • Nadel, L. (2008). The hippocampus and context revisited. In S. J. Y. Mizumori (Ed.), Hippocampal place fields: Relevance to learning and memory (pp. 3–15). New York: Oxford University Press.

    Chapter  Google Scholar 

  • Nadel, L., & Payne, J. D. (2002). The hippocampus, wayfinding and episodic memory. In P. E. Sharp (Ed.), The neural basis of navigation: Evidence from single cell recording (pp. 235–248). Boston: Kluwer.

    Chapter  Google Scholar 

  • Nadel, L., & Wilner, J. (1980). Context and conditioning: a place for space. Physiological Psychology, 8, 218–228.

    Article  Google Scholar 

  • Nicola, S. M., Yun, I. A., Wakabayashi, K. T., & Fields, H. L. (2004). Firing of nucleus accumbens neurons during the consummatory phase of a discriminative stimulus task depends on previous reward predictive cues. Journal of Neurophysiology, 91, 1866–1882.

    Article  PubMed  Google Scholar 

  • Nudo, R. J. (2011). Neural bases of recovery after brain injury. Journal of Communications Disorder, 44, 515–520.

    Article  Google Scholar 

  • O’Keefe, J. (1976). Place units in the hippocampus of the freely moving rat. Experimental Neurology, 51, 78–109.

    Article  Google Scholar 

  • O’Keefe, J., & Dostrovsky, J. (1971). The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Research, 34, 171–175.

    Google Scholar 

  • O’Keefe, J. & Nadel, L. (1978). The hippocampus as a cognitive map. Oxford University Press: Oxford.

    Google Scholar 

  • O’Keefe, J., & Recce, M. L. (1993). Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus, 3, 317–330.

    Article  Google Scholar 

  • Olton, D. S., Branch, M., & Best, P. J. (1978). Spatial correlates of hippocampal unit activity. Experimental Neurology, 58, 387–409.

    Article  PubMed  Google Scholar 

  • Packard, M. G., & McGaugh, J. L. (1996). Inactivation of hippocampus or caudate nucleus with lidocaine differentially affects expression of place and response learning. Neurobiology of Learning and Memory, 65, 65–72.

    Article  PubMed  Google Scholar 

  • Packard, M. G., Hirsh, R., & White, N. M. (1989). Differential effects of fornix and caudate nucleus lesions on two radial maze tasks: Evidence for multiple memory systems. Journal of Neuroscience, 9, 1465–1472.

    PubMed  Google Scholar 

  • Pastalkova, E., Itskov, V., Amarasingham, A., & Buzsaki, G. (2008). Internally generated cell assembly sequences in the rat hippocampus. Science, 321, 1322–1327.

    Article  PubMed Central  PubMed  Google Scholar 

  • Paulsen, O., & Moser, E. I. (1998). A model of hippocampal memory encoding and retrieval: GABAergic control of synaptic plasticity. Trends in Neuroscience, 21, 273–278.

    Article  Google Scholar 

  • Paz, R., & Pare, D. (2013). Physiological basis for emotional modulation of memory circuits by the amygdala. Current Opinion in Neurobiology, 23, 1–6.

    Article  Google Scholar 

  • Pearce, J. M., & Hall. G. (1980). A model for Pavlovian learning: Variations in the effectiveness of conditioned but not of unconditioned stimuli. Psychological Review, 87, 532–552.

    Article  PubMed  Google Scholar 

  • Pecina, S., Cagniard, B., Berridge, K. C., Aldridge J. W., & Zhuang, X. (2003). Hyperdopaminergic mutant mice have higher ‘wanting’ but not ‘liking’ for sweet rewards. Journal of Neuroscience, 23, 9395–9402.

    PubMed  Google Scholar 

  • Pennartz, C. M., Berke, J. D., Graybiel, A. M., Ito, R., Lansink, C. S., van der Meer, M., Redish, A. D., Smith, K. S., & Voorn, P. (2009). Corticostriatal interactions during learning, memory processing, and decision making. Journal of Neuroscience, 29, 12831–12838.

    Article  PubMed Central  PubMed  Google Scholar 

  • Penner, M. R., & Mizumori, S. J. Y. (2012a). Age-associated changes in the hippocampal-ventral striatum-ventral tegmental loop that impact learning, prediction and context discrimination. Frontiers in Aging Neuroscience, 4, 1–12.

    Article  Google Scholar 

  • Penner, M. R., & Mizumori, S. J. Y. (2012b). Neural systems analysis of decision making during goal-directed navigation. Progress in Neurobiology, 96, 96–135.

    Article  PubMed  Google Scholar 

  • Plenz, D., & Aertsen, A. (1996). Neural dynamics in cortex–striatum cocultures. I. Anatomy and electrophysiology of neuronal cell types. Neuroscience, 70, 861–891.

    Article  PubMed  Google Scholar 

  • Plenz, D., & Kitai, S. T. (1998). Up and down states in striatal medium spiny neurons simultaneously recorded with spontaneous activity in fast-spiking interneurons studied in cortex-striatum-substantia nigra organotypic cultures. Journal of Neuroscience, 18, 266–283.

    PubMed  Google Scholar 

  • Puryear, C. B., King, M., & Mizumori, S. J. Y. (2006). Specific changes in hippocampal spatial codes predict spatial working memory performance. Behavioral Brain Research, 169, 168–175.

    Article  Google Scholar 

  • Puryear, C. B., Kim, M. J., & Mizumori, S. J. Y. (2010). Conjunctive encoding of reward and movement by ventral tegmental area neurons: Contextual control during adaptive spatial navigation. Behavioral Neuroscience, 124, 234–247. (Erratum in: Behav Neurosci. 2010 Jun;124(3):336).

    Article  PubMed Central  PubMed  Google Scholar 

  • Ragozzino, M. E., Wilcox, C., Raso, M., & Kesner, R. P. (1999a). Involvement of rodent prefrontal cortex subregions in strategy switching. Behavioral Neuroscience, 113, 32–41.

    Article  PubMed  Google Scholar 

  • Ragozzino, M. E., Detrick, S., & Kesner, R. P. (1999b). Involvement of the prelimbic infralimbic areas of the rodent prefrontal cortex in behavioral flexibility for place and response learning. Journal of Neuroscience, 19, 4585–4594.

    PubMed  Google Scholar 

  • Ragozzino, K. E., Leutgeb, S., & Mizumori, S. J. Y. (2001). Conditional coupling of dorsal striatal head direction and hippocampal place representations during spatial navigation. Experimental Brain Research, 139, 372–376.

    Article  PubMed  Google Scholar 

  • Ragozzino, M. E., Ragozzino, K. E., Mizumori, S. J. Y., & Kesner, R. P. (2002). The role of the dorsomedial striatum in behavioral flexibility for response and visual cue discrimination learning. Behavioral Neuroscience, 116, 105–115.

    Article  PubMed Central  PubMed  Google Scholar 

  • Ranck, J. B., Jr. (1973). Studies on single neurons in dorsal hippocampal formation and septum in unrestrained rats. I. Behavioral correlates and firing repertoires. Experimental Neurology, 41, 461–531.

    Article  PubMed  Google Scholar 

  • Redish, A. D. (1999). Beyond the cognitive map: From place cells to episodic memory. Cambridge: MIT Press

    Google Scholar 

  • Rescorla, R. A., & Wagner, A. R. (1972). A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement. In A. H. Black & W. F. Prokasy (Eds). Classical conditioning II: Current research and theory (pp. 64–99). New York: Appleton Century Crofts.

    Google Scholar 

  • Robinson, T. E., & Kolb, B. (2004). Structural plasticity associated with exposure to drugs of abuse. Neuropharmacology, 47(Suppl 1), 33–46.

    Article  PubMed  Google Scholar 

  • Sabatino, M., Ferraro, G., Liberti, G., Vella, N., & La Grutta, V. (1985). Striatal and septal influence on hippocampal theta and spikes in the cat. Neuroscience Letters, 61, 55–59.

    Article  PubMed  Google Scholar 

  • Save, E., Buhot, M. C., Foreman, N., & Thinus-Blanc, C. (1992a). Exploratory activity and response to a spatial change in rats with hippocampal or posterior parietal cortical lesions. Behavioral Brain Research, 47, 113–127

    Article  Google Scholar 

  • Save, E., Poucet, B., Foreman, N., & Buhot, M. C. (1992b). Object exploration and reactions to spatial and nonspatial changes in hooded rats following damage to parietal cortex or hippocampal formation. Behavioral Neuroscience, 106, 447–456.

    Article  PubMed  Google Scholar 

  • Scheidt, R. A., Zimbelman, J. L., Salowitz, N. M. G., Suminski, A. J., Mosier, K. M., Houk, J., & Simo, L. (2012). Remembering forward: Neural correlates of memory and prediction in human motor adaptation. Neuroimage, 59, 582–600.

    Article  PubMed Central  PubMed  Google Scholar 

  • Schultz, W. (2010). Dopamine signals for reward value and risk: basic and recent data. Behavior and Brain Function, 6, 24.

    Article  Google Scholar 

  • Schultz, W., & Dickinson, A. (2000). Neuronal coding of prediction errors. Annual Reviews in Neuroscience, 23, 473–500.

    Article  Google Scholar 

  • Schultz, W., Dayan, P., & Montague, P. R. (1997). A neural substrate of prediction and reward. Science, 275, 1593–1599.

    Article  PubMed  Google Scholar 

  • Scimeca, J. M., & Badre, D. (2012). Striatal contributions to declarative memory retrieval. Neuron, 75, 380–392.

    Article  PubMed Central  PubMed  Google Scholar 

  • Shirvalkar, P. R., Rapp, P. R., & Shapiro, M. L. (2010). Bidirectional changes to hippocampal theta-gamma comodulation predict memory for recent spatial episodes. Proceedings of the National Academy of Sciences U S A, 107, 7054–7059.

    Article  Google Scholar 

  • Siapas, A. G., Lubenov, E. V., & Wilson, M. A. (2005). Prefrontal phase locking to hippocampal theta oscillations. Neuron, 46, 141–151.

    Article  PubMed  Google Scholar 

  • Smith, D. M., & Mizumori, S. J. Y. (2006a). Hippocampal place cells, context and episodic memory. Hippocampus, 16, 716–729.

    Article  PubMed  Google Scholar 

  • Smith, D. M., & Mizumori, S. J. Y. (2006b). Learning-related development of context-specific neuronal responses to places and events: The hippocampal role in context processing. Journal of Neuroscience, 26, 3154–3163.

    Article  PubMed  Google Scholar 

  • Smith, D. M., Wakeman, D., Patel, J., & Gabriel, M. (2004). Fornix lesions impair context-related cingulothalamic neuronal patterns and concurrent discrimination learning. Behavioral Neuroscience, 118, 1225–1239.

    Article  PubMed  Google Scholar 

  • Snyder, L. H., Batista, A. P., & Andersen, R. A. (1997). Coding of intention in the posterior parietal cortex. Nature, 386, 167–170.

    Article  PubMed  Google Scholar 

  • Stalnaker, T. A., Calhoon, G. G., Ogawa, M., Roesch, M. T., & Schoenbaum, G. (2012). Reward prediction error signaling in posterior dorsomedial striatum is action specific. Journal of Neuroscience, 32, 10296–10305.

    Article  PubMed Central  PubMed  Google Scholar 

  • Tabuchi, E. T., Mulder, A. B., & Wiener, S. I. (2000). Position and behavioral modulation of synchronization of hippocampal and accumbens neuronal discharges in freely moving rats. Hippocampus, 10, 717–728.

    Article  PubMed  Google Scholar 

  • Tanaka, H., Sejnowski, T. J., & Krakauer, J. W. (2009). Adaptation to visuomotor rotation through interaction between posterior parietal and motor cortical areas. Journal of Neurophysiology, 102, 2921–2932.

    Article  PubMed Central  PubMed  Google Scholar 

  • Tse, D., Langston, R. F., Kakeyama, M., Bethus, I., Spooner, P. A., Wood, E. R., Witter, M. P., & Morris, R. G. (2007). Schemas and memory consolidation. Science, 316, 76–82.

    Article  PubMed  Google Scholar 

  • Tulving, E. (2002). Episodic memory: From mind to brain. Annual Reviews in Psychology, 53, 1–25.

    Article  Google Scholar 

  • Turrigiano, G. G. (1999). Homeostatic plasticity in neuronal networks: The more things change, the more they stay the same. Trends in Neuroscience, 22, 221–227.

    Article  Google Scholar 

  • Turrigiano, G. G. (2008). The self-tuning neuron: Synaptic scaling of excitatory synapses. Cell, 135, 422–435.

    Article  PubMed Central  PubMed  Google Scholar 

  • Turrigiano, G. G. (2011). Homeostatic synaptic plasticity: Local and global mechanisms for stabilizing neuronal function. Cold Spring Harbor Perspectives in Biology, 4a, 005736.

    Google Scholar 

  • Turrigiano, G. G., & Nelson, S. B. (2004). Homeostatic plasticity in the developing nervous system. Nature Reviews in Neuroscience, 5, 97–107.

    Article  PubMed  Google Scholar 

  • Turrigiano, G. G., Leslie, K. R., Desai, N. S., Rutherford, L. C., & Nelson, S. B. (1998). Activity-dependent scaling of quantal amplitude in neocortical neurons. Nature, 391, 892–896.

    Article  PubMed  Google Scholar 

  • van der Meer, M. A., & Redish, A. D. (2009). Low and high gamma oscillations in rat ventral striatum have distinct relationships to behavior, reward, and spiking activity on a learned spatial decision task. Frontiers in Integrative Neuroscience, 3, 9.

    PubMed Central  PubMed  Google Scholar 

  • Vanderwolf, C. H. (1969). Hippocampal electrical activity and voluntary movement in the rat. Electroencephalography Clinical Neurophysiology, 26, 407–418.

    Article  PubMed  Google Scholar 

  • Varela, F., Lachaux, J. P., Rodriguez, E., & Martinerie, J. (2001). The brainweb: Phase synchronization and large-scale integration. Nature Reviews in Neuroscience, 2, 229–239.

    Article  PubMed  Google Scholar 

  • Vinogradova, O. S. (1995). Expression, control, and probably functional significance of the neuronal theta-rhythm. Progress in Neurobiology, 45, 523–583.

    Article  PubMed  Google Scholar 

  • Voorn, P., Vanderschuren, L. J., Groenewegen, H. J., Robbins, T. W., & Pennartz, C. M. (2004) Putting a spin on the dorsal-ventral divide of the striatum. Trends in Neuroscience, 27, 468–474.

    Article  Google Scholar 

  • Walsh, M. M., & Anderson, J. R. (2012). Learning from experience: event-related potential correlates of reward processing, neural adaptation, and behavioral choice. Neuroscience and Biobehaioral Reviews, 36, 1870–1884.

    Article  Google Scholar 

  • Watson, K. K., & Platt, M. L. (2008). Neuroethology of reward and decision making. Philosophical Transactions of the Royal Society of London B, 363, 3825–3835.

    Article  Google Scholar 

  • Wilson, C. J. (1993). The generation of natural firing patterns in neostriatal neurons. Progress in Brain Research, 99, 277–298.

    Article  PubMed  Google Scholar 

  • Wilson, C. J., & Kawaguchi, Y. (1996). The origins of two-state spontaneous membrane potential fluctuations of neostriatal spiny neurons. Journal of Neuroscience, 16, 2397–2410.

    PubMed  Google Scholar 

  • Womelsdorf, T., Schoffelen, J. M., Oostenveld, R., Singer, W., Desimone, R., Engel, A. K., & Fries, P. (2007). Modulation of neuronal interactions through neuronal synchronization. Science, 316, 1609–1612.

    Article  PubMed  Google Scholar 

  • Wood, E. R., Dudchenko, P. A., & Eichenbaum H. (1999). The global record of memory in hippocampal neural activity. Nature, 397, 613–616.

    Article  PubMed  Google Scholar 

  • Yeshenko, O., Guazzelli, A., & Mizumori, S. J. (2004). Context-dependent reorganization of spatial and movement representations by simultaneously recorded hippocampal and striatal neurons during performance of allocentric and egocentric tasks. Behavioral Neuroscience, 118, 751–769.

    Article  PubMed  Google Scholar 

  • Yin, H. H., & Knowlton, B. J. (2006). The role of the basal ganglia in habit formation. Nature Reviews in Neuroscience, 7, 464–476.

    Article  PubMed  Google Scholar 

  • Young, J. J., & Shapiro, M. L. (2009). Double dissociation and hierarchical organization of strategy switches and reversals in the rat PFC. Behavioral Neuroscience, 123, 1028–1035.

    Article  PubMed Central  PubMed  Google Scholar 

  • Zahm, D. S., Cheng, A. Y., Lee, T. J., Ghobadi, C. W., Schwartz, Z. M., Geisler, S., Parsely, K. P., Gruber, C., & Veh, R. W. (2011). Inputs to the midbrain dopaminergic complex in the rat, with emphasis on extended amygdala-recipient sectors. Journal of Comparative Neurology, 19, 3159–3188.

    Article  Google Scholar 

Download references

Acknowledgements

This data described in this chapter were generated with grant support over the past 20 years (most recently NIH grant MH58755). The current conceptual frameworked evolved over that time, and they were based on discussions with a number of graduate students and postdoctoral students. Most recently, these included Wambura Fobbs, Katy Gill, Yong Sang Jo, Adria Martig, Sujean Oh, Corey Puryear, David Smith, Valerie Tryon, and Oxana Yeshenko.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheri J. Y. Mizumori PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mizumori, S. (2016). Self Regulation of Memory Processing Centers of the Brain. In: Jackson, P., Chiba, A., Berman, R., Ragozzino, M. (eds) The Neurobiological Basis of Memory. Springer, Cham. https://doi.org/10.1007/978-3-319-15759-7_9

Download citation

Publish with us

Policies and ethics