Skip to main content

Space, Time, and the Hippocampus

  • Chapter
  • First Online:
The Neurobiological Basis of Memory

Abstract

Kesner’s attribute model of memory endows the hippocampus with the ability to code both time and space. These two parameters are intertwined in their very essence and lend structure to the ongoing autobiographical record of an organism. Kesner’s addition of time and temporal processing to the notion that the hippocampus supports a spatial cognitive map, fused hippocampal theory into a coherent framework for human and non-human animals. The mechanism by which the hippocampus and its associated circuitry supports memory for time is a fertile area of research that was seeded by Kesner and his contemporaries. The inherent physiological properties of the hippocampus support Kesner’s original hypothesis, emphasizing that temporal and spatial inputs converge in the hippocampus. The temporal scale of this convergence is evident from patterns of neuronal firing to enduring memories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aimone, J. B., Wiles, J., & Gage, F. H. (2006). Potential role for adult neurogenesis in the encoding of time in new memories. Nature Neuroscience, 9(6), 723–727. doi:nn1707 [pii] 10.1038/nn1707.

    Article  PubMed  Google Scholar 

  • Aimone, J. B., Wiles, J., & Gage, F. H. (2009). Computational influence of adult neurogenesis on memory encoding. Neuron, 61(2), 187–202. doi:S0896-6273(08)01019-2 [pii] 10.1016/j.neuron.2008.11.026.

    Article  PubMed Central  PubMed  Google Scholar 

  • Aimone, J. B., Deng, W., & Gage, F. H. (2011). Resolving new memories: a critical look at the dentate gyrus, adult neurogenesis, and pattern separation. Neuron 70(4), 589–596. doi: 10.1016/j.neuron.2011.05.010.

    Google Scholar 

  • Allen, T. A., Morris, A. M., Mattfeld, A. T., Stark, C. E. L., & Fortin, N. J. (2014). A Sequence of events model of episodic memory shows parallels in rats and humans. Hippocampus, 24, 1178–1188 doi:10.1002/hipo.22301.

    Article  PubMed  Google Scholar 

  • Aristotle, & Barnes, J. (1984) The complete works of Aristotle: The revised Oxford translation (Bollingen Series LXXI-2) (Vol. 2). New Jersey: Princeton University Press.

    Google Scholar 

  • Bostock, E., Muller, R. U., & Kubie, J. L. (1991). Experience-dependent modifications of hippocampal place cell firing. Hippocampus, 1(2), 193–205. doi:10.1002/hipo.450010207.

    Article  PubMed  Google Scholar 

  • Burgess, N., Maguire, E. A., & O’Keefe, J. (2002). The human hippocampus and spatial and episodic memory. Neuron 35(4), 625–641.

    Google Scholar 

  • Chiba, A. A., Kesner, R. P., & Jackson, P. A. (2002). Two forms of spatial memory: A double dissociation between the parietal cortex and the hippocampus in the rat. Behavioral Neuroscience, 116(5), 874–883.

    Article  PubMed  Google Scholar 

  • Cohen, N. J., Poldrack, R. A., & Eichenbaum, H. (1997). Memory for items and memory for relations in the procedural/declarative memory framework. Memory (Hove, England), 5(1–2), 131–178. doi:10.1080/741941149.

    Article  Google Scholar 

  • Davidson, T. J., Kloosterman, F., & Wilson, M. A. (2009). Hippocampal replay of extended experience. Neuron, 63(4), 497–507. doi:10.1016/j.neuron.2009.07.027.

    Article  PubMed Central  PubMed  Google Scholar 

  • DeCoteau, W. E., & Kesner, R. P. (2000). A double dissociation between the rat hippocampus and medial caudoputamen in processing two forms of knowledge. Behavioral Neuroscience, 114(6), 1096–1108.

    Article  PubMed  Google Scholar 

  • Deng, W., Mayford, M., & Gage, F. H. (2013). Selection of distinct populations of dentate granule cells in response to inputs as a mechanism for pattern separation in mice. eLife, 2, e00312. doi:10.7554/eLife.00312

    Article  PubMed Central  PubMed  Google Scholar 

  • de Pontes, J. C. A., Batista, A. M., Viana, R. L., & Lopes, S. R. (2005). Short-term memories with a stochastic perturbation. Chaos, Solitons & Fractals 23(5), 1689–1694.

    Google Scholar 

  • DiMattia, B. D., & Kesner, R. P. (1988). Spatial cognitive maps: Differential role of parietal cortex and hippocampal formation. Behavioral Neuroscience, 102(4), 471–480.

    Article  PubMed  Google Scholar 

  • Dragoi, G., & Buzsáki, G. (2006). Temporal encoding of place sequences by hippocampal cell assemblies. Neuron, 50(1), 145–157. doi:10.1016/j.neuron.2006.02.023.

    Article  PubMed  Google Scholar 

  • Esposito, M. S., Piatti, V. C., Laplagne, D. A., Morgenstern, N. A., Ferrari, C. C., Pitossi, F. J., & Schinder, A. F. (2005). Neuronal differentiation in the adult hippocampus recapitulates embryonic development. The Journal of Neuroscience, 25(44), 10074–10086. doi:25/44/10074 [pii] 10.1523/JNEUROSCI.3114-05.2005.

    Article  PubMed  Google Scholar 

  • Frank, L. M., Brown, E. N., & Wilson, M. (2000). Trajectory encoding in the hippocampus and entorhinal cortex. Neuron, 27(1), 169–178.

    Article  PubMed  Google Scholar 

  • Frank, L. M., Brown, E. N., & Stanley, G. B. (2006). Hippocampal and cortical place cell plasticity: Implications for episodic memory. Hippocampus, 16(9), 775–784. doi:10.1002/hipo.20200.

    Article  PubMed  Google Scholar 

  • Gupta, A. S., van der Meer, M. A. A., Touretzky, D. S., & Redish, A. D. (2010). Hippocampal replay is not a simple function of experience. Neuron, 65(5), 695–705. doi:10.1016/j.neuron.2010.01.034.

    Article  PubMed Central  PubMed  Google Scholar 

  • Howard, M. W., & Kahana, M. J. (2002). A distributed representation of temporal context. Journal of Mathematical Psychology, 46(3), 269–299. doi:10.1006/jmps.2001.1388.

    Article  Google Scholar 

  • Howard, M. W., Fotedar, M. S., Datey, A. V, & Hasselmo, M. E. (2005). The temporal context model in spatial navigation and relational learning: Toward a common explanation of medial temporal lobe function across domains. Psychological Review, 112(1), 75–116. doi:10.1037/0033-295X.112.1.75.

    Article  PubMed Central  PubMed  Google Scholar 

  • Jackson-Smith, P., Kesner, R. P., & Chiba, A. A. (1993). Continuous recognition of spatial and nonspatial stimuli in hippocampal-lesioned rats. Behavioral and Neural Biology, 59(2), 107–119.

    Article  PubMed  Google Scholar 

  • Jacobson, T. K., Gruenbaum, B. F., & Markus, E. J. (2011). Extensive training and hippocampus or striatum lesions: Effect on place and response strategies. Physiology & Behavior, 105(3), 645–652. doi:10.1016/j.physbeh.2011.09.027.

    Article  Google Scholar 

  • Jadhav, S. P., Kemere, C., German, P. W., & Frank, L. M. (2012). Awake hippocampal sharp-wave ripples support spatial memory. Science (New York, N.Y.), 336(6087), 1454–1458. doi:10.1126/science.1217230.

    Article  Google Scholar 

  • Kametani, H., & Kesner, R. P. (1989). Retrospective and prospective coding of information: Dissociation of parietal cortex and hippocampal formation. Behavioral Neuroscience, 103, 84–89.

    Article  PubMed  Google Scholar 

  • Kentros, C., Hargreaves, E., Hawkins, R. D., Kandel, E. R., Shapiro, M., & Muller, R. V. (1998). Abolition of long-term stability of new hippocampal place cell maps by NMDA receptor blockade. Science (New York, N.Y.), 280(5372), 2121–2126.

    Article  Google Scholar 

  • Kentros, C. G., Agnihotri, N. T., Streater, S., Hawkins, R. D., & Kandel, E. R. (2004). Increased attention to spatial context increases both place field stability and spatial memory. Neuron, 42(2), 283–295.

    Article  PubMed  Google Scholar 

  • Kesner, R. P. (1980). An attribute analysis of memory: The role of the hippocampus. Physiology Psychology, 8, 189–197.

    Article  Google Scholar 

  • Kesner, R. P. (1990). New approaches to the study of comparative cognition. NIDA Research Monograph, 97, 22–36 (http://www.ncbi.nlm.nih.gov/pubmed/2247138).

    PubMed  Google Scholar 

  • Kesner, R. P. (2013). A process analysis of the CA3 subregion of the hippocampus. Frontiers in Cellular Neuroscience, 7, 78. doi:10.3389/fncel.2013.00078.

    Article  PubMed Central  PubMed  Google Scholar 

  • Kesner, R. P., & Novak, J. (1982). Serial position curve in rats: Role of the dorsal hippocampus. Science, 218, 173–174.

    Article  PubMed  Google Scholar 

  • Kesner, R. P., & Rolls, E. T. (2001). Role of long-term synaptic modification in short-term memory. Hippocampus, 11(3), 240–250. doi:10.1002/hipo.1040.

    Article  PubMed  Google Scholar 

  • Kesner, R. P., Adelstein, T. B., & Crutcher, K. A. (1989). Equivalent spatial location memory deficits in rats with medial septum or hippocampal formation lesions and patients with dementia of the Alzheimer’s type. Brain and Cognition, 9(2), 289–300.

    Article  PubMed  Google Scholar 

  • Kesner, R. P., Hui, X., Sommer, T., Wright, C., Barrera, V. R., Fanselow, M. S. (2014). The role of postnatal neurogenesis in supporting remote memory and spatial metric processing. Hippocampus, 24, 1663–1671. doi:10.1002/hipo.22346.

    Article  PubMed  Google Scholar 

  • Kjelstrup, K. B., Solstad, T., Brun, V. H., Hafting, T., Leutgeb, S., Witter, M. P., et al. (2008). Finite scale of spatial representation in the hippocampus. Science, 321(5885), 140–143. doi:321/5885/140 [pii] 10.1126/science.1157086.

    Article  PubMed  Google Scholar 

  • Laplagne, D. A., Esposito, M. S., Piatti, V. C., Morgenstern, N. A., Zhao, C., van Praag, H., et al. (2006). Functional convergence of neurons generated in the developing and adult hippocampus. Plos Biology, 4(12), e409. doi:06-PLBI-RA-0577R3 [pii] 10.1371/journal.pbio.0040409.

    Article  PubMed Central  PubMed  Google Scholar 

  • Laplagne, D. A., Kamienkowski, J. E., Esposito, M. S., Piatti, V. C., Zhao, C., Gage, F. H., & Schinder, A. F. (2007). Similar GABAergic inputs in dentate granule cells born during embryonic and adult neurogenesis. European Journal Neuroscience, 25(10), 2973–2981. doi:EJN5549 [pii] 10.1111/j.1460-9568.2007.05549.x.

    Article  Google Scholar 

  • Lenck-Santini, P.-P., Rivard, B., Muller, R. U., & Poucet, B. (2005). Study of CA1 place cell activity and exploratory behavior following spatial and nonspatial changes in the environment. Hippocampus, 15(3), 356–69. doi:10.1002/hipo.20060.

    Article  PubMed  Google Scholar 

  • Leutgeb, S., Leutgeb, J. K., Moser, M. B., & Moser, E. I. (2005). Place cells, spatial maps and the population code for memory. Current Opinion Neurobiology, 15(6), 738–746. doi:S0959-4388(05)00152-2 [pii] 10.1016/j.conb.2005.10.002.

    Article  Google Scholar 

  • Leutgeb, J. K., Leutgeb, S., Moser, M. B., & Moser, E. I. (2007). Pattern separation in the dentate gyrus and CA3 of the hippocampus. Science, 315(5814), 961–966. doi:315/5814/961 [pii] 10.1126/science.1135801.

    Article  PubMed  Google Scholar 

  • MacDonald, C. J., Lepage, K. Q., Eden, U. T., & Eichenbaum, H. (2011). Hippocampal “time cells” bridge the gap in memory for discontiguous events. Neuron, 71(4), 737–749. doi:10.1016/j.neuron.2011.07.012.

    Article  PubMed Central  PubMed  Google Scholar 

  • Mankin, E. A., Sparks, F. T., Slayyeh, B., Sutherland, R. J., Leutgeb, S., & Leutgeb, J. K. (2012). Neuronal code for extended time in the hippocampus. Proc Natl Acad Sci U S A. 109(47), 19462–19467. doi: 10.1073/PNAS.1214107109. Epub 2012 Nov 6. Erratum in: Proc Natl Acad Sci U S A. 2015, 112(10), E1169.

    Google Scholar 

  • McClelland, J. L., McNaughton, B. L., & O’Reilly, R. C. (1995). Why there are complementary learning systems in the hippocampus and neocortex: Insights from the successes and failures of connectionist models of learning and memory. Psychological Review, 102(3), 419–457.

    Article  PubMed  Google Scholar 

  • McNaughton, B. L., Barnes, C. A., & O’Keefe, J. (1983). The contributions of position, direction, and velocity to single unit activity in the hippocampus of freely-moving rats. Experimental Brain Research, 52(1), 41–49.

    Article  PubMed  Google Scholar 

  • Milner, B., & Penfield, W. (1956). The effect of hippocampal lesions on recent memory. Transactions of the American Neurological Association, 42-8(80th Meeting).

    Google Scholar 

  • Milner, B., Corkin, S., & Teuber, H. L. (1968). Further analysis of the hippocampal amnesic syndrome: 14-year follow-up study of H.M. Neuropsychologia, 6(3), 215–234. doi:10.1016/0028-3932(68)90021-3.

    Article  Google Scholar 

  • Milner, B., Squire, L. R., & Kandel, E. R. (1998). Cognitive neuroscience and the study of memory. Neuron, 20(3), 445–468.

    Article  PubMed  Google Scholar 

  • Morris, R. G. M., Schenk, F., Tweedie, F., & Jarrard, L. E. (1990). Ibotenate lesions of hippocampus and/or subiculum: Dissociating components of allocentric spatial learning. The European Journal of Neuroscience, 2(12), 1016–1028 (http://www.ncbi.nlm.nih.gov/pubmed/12106063).

    Article  PubMed  Google Scholar 

  • Morris, A. M., Curtis, B. J., Churchwell, J. C., Maasberg, D. W., & Kesner, R. P. (2013). Temporal associations for spatial events: The role of the dentate gyrus. Behavioural Brain Research, 256, 250–6. doi:10.1016/j.bbr.2013.08.021.

    Article  PubMed  Google Scholar 

  • Munn, R. G. K., & Bilkey, D. K. (2011). The firing rate of hippocampal CA1 place cells is modulated with a circadian period. Hippocampus, 22, 1325–1337. doi:10.1002/hipo.20969.

    Article  PubMed  Google Scholar 

  • Neunuebel, J. P., & Knierim, J. J. (2014). CA3 retrieves coherent representations from degraded input: Direct evidence for CA3 pattern completion and dentate gyrus pattern separation. Neuron, 81(2), 416–427. doi:10.1016/j.neuron.2013.11.017.

    Article  PubMed Central  PubMed  Google Scholar 

  • Nitz, D. (2009). Parietal cortex, navigation, and the construction of arbitrary reference frames for spatial information. Neurobiology of Learning and Memory, 91(2), 179–185. doi:10.1016/j.nlm.2008.08.007.

    Article  PubMed  Google Scholar 

  • O’Keefe, J., & Dostrovsky, J. (1971). The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Research, 34(1), 171–175.

    Article  PubMed  Google Scholar 

  • O’Keefe, J., & Nadel, L. (1978). The hippocampus as a cognitive map. Hippocampus (Vol. 3, p. 570). Oxford: Oxford University Press.

    Google Scholar 

  • O’Reilly, R. C., & McClelland, J. L. (1994). Hippocampal conjunctive encoding, storage, and recall: Avoiding a trade-off. Hippocampus, 4(6), 661–682. doi:10.1002/hipo.450040605.

    Article  PubMed  Google Scholar 

  • Olton, D. S., & Papas, B. C. (1979). Spatial memory and hippocampal function. Neuropsychologia, 17(6), 669–682.

    Article  PubMed  Google Scholar 

  • Olton, D. S., Walker, J. A., & Gage, F. H. (1978). Hippocampal connections and spatial discrimination. Brain Research, 139(2), 295–308.

    Article  PubMed  Google Scholar 

  • Pastalkova, E., Itskov, V., Amarasingham, A., & Buzsáki, G. (2008). Internally generated cell assembly sequences in the rat hippocampus. Science (New York, N.Y.), 321(5894), 1322–1327. doi:10.1126/science.1159775.

    Article  Google Scholar 

  • Piatti, V. C., Esposito, M. S., & Schinder, A. F. (2006). The timing of neuronal development in adult hippocampal neurogenesis. The Neuroscientist, 12(6), 463–468. doi:12/6/463 [pii] 10.1177/1073858406293538.

    Article  PubMed  Google Scholar 

  • Poucet, B., Save, E., & Lenck-Santini, P. P. (2000). Sensory and memory properties of hippocampal place cells. Reviews in the Neurosciences, 11(2–3), 95–111.

    PubMed  Google Scholar 

  • Rangel, L. M., & Eichenbaum, H. (2013). What’s new is older. eLife, 2, e00605. doi:10.7554/eLife.00605.

    Article  PubMed Central  PubMed  Google Scholar 

  • Rangel, L. M., Alexander, A. S., Aimone, J. B., Wiles, J., Gage, F. H., Chiba, A. A., & Quinn, L. K. (2014). Temporally selective contextual encoding in the dentate gyrus of the hippocampus. Nature Communications, 5, 3181. doi:10.1038/ncomms4181.

    Article  PubMed Central  PubMed  Google Scholar 

  • Rivard, B., Li, Y., Lenck-Santini, P.-P., Poucet, B., & Muller, R. U. (2004). Representation of objects in space by two classes of hippocampal pyramidal cells. The Journal of General Physiology, 124(1), 9–25. doi:10.1085/jgp.200409015.

    Article  PubMed Central  PubMed  Google Scholar 

  • Rolls, E. T. (2010). A computational theory of episodic memory formation in the hippocampus. Behavioural Brain Research, 215(2), 180–196. doi:10.1016/j.bbr.2010.03.027.

    Article  PubMed  Google Scholar 

  • Rolls, E. T., & Kesner, R. P. (2006). A computational theory of hippocampal function, and empirical tests of the theory. Progress in Neurobiology, 79(1), 1–48. doi:S0301-0082(06)00036-0.

    Article  PubMed  Google Scholar 

  • Rosenbaum, R. S., Priselac, S., Köhler, S., Black, S. E., Gao, F., Nadel, L., & Moscovitch, M. (2000). Remote spatial memory in an amnesic person with extensive bilateral hippocampal lesions. Nature Neuroscience, 3(10), 1044–1048. doi:10.1038/79867.

    Article  PubMed  Google Scholar 

  • Rosenbaum, R. S., Köhler, S., Schacter, D. L., Moscovitch, M., Westmacott, R., Black, S. E., et al. (2005). The case of K.C.: Contributions of a memory-impaired person to memory theory. Neuropsychologia, 43(7), 989–1021. doi:10.1016/j.neuropsychologia.2004.10.007.

    Article  PubMed  Google Scholar 

  • Rowland, D. C., Yanovich, Y., & Kentros, C. G. (2011). A stable hippocampal representation of a space requires its direct experience. Proceedings of the National Academy of Sciences, 108(35), 14654–14658. doi:10.1073/pnas.1105445108.

    Article  Google Scholar 

  • Sederberg, P. B., Miller, J. F., Howard, M. W., & Kahana, M. J. (2010). The temporal contiguity effect predicts episodic memory performance. Memory & Cognition, 38(6), 689–699. doi:10.3758/MC.38.6.689.

    Article  Google Scholar 

  • Shen, J., Barnes, C. A., McNaughton, B. L., Skaggs, W. E., & Weaver, K. L. (1997). The effect of aging on experience-dependent plasticity of hippocampal place cells. The Journal of Neuroscience, 17(17), 6769–6782.

    PubMed  Google Scholar 

  • Skaggs, W. E., McNaughton, B. L., Wilson, M. A., & Barnes, C. A. (1996). Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences. Hippocampus, 6(2), 149–172. doi:10.1002/(SICI)1098-1063(1996)6:2<149::AID-HIPO6>3.0.CO;2-K.

    Article  PubMed  Google Scholar 

  • Tashiro, A., Makino, H., & Gage, F. H. (2007). Experience-specific functional modification of the dentate gyrus through adult neurogenesis: A critical period during an immature stage. The Journal of Neuroscience, 27(12), 3252–3259. doi:27/12/3252 [pii] 10.1523/JNEUROSCI.4941-06.2007.

    Article  PubMed  Google Scholar 

  • Treves, A., & Rolls, E. T. (1992). Computational constraints suggest the need for two distinct input systems to the hippocampal CA3 network. Hippocampus, 2(2), 189–199. doi:10.1002/hipo.450020209.

    Article  PubMed  Google Scholar 

  • Tse, D., Langston, R. F., Kakeyama, M., Bethus, I., Spooner, P. A., Wood, E. R., et al. (2007). Schemas and memory consolidation. Science (New York, N.Y.), 316(5821), 76–82. doi:10.1126/science.1135935.

    Article  Google Scholar 

  • Tsodyks, M. V., Skaggs, W. E., Sejnowski, T. J., & McNaughton, B. L. (1996). Population dynamics and theta rhythm phase precession of hippocampal place cell firing: A spiking neuron model. Hippocampus, 6(3), 271–280. doi:10.1002/(SICI)1098-1063(1996)6:3<271::AID-HIPO5>3.0.CO;2-Q.

    Article  PubMed  Google Scholar 

  • Tulving, E. (2002). Episodic memory: From mind to brain. Annual Review of Psychology, 53(1), 1–25. doi:10.1146/annurev.psych.53.100901.135114.

    Article  PubMed  Google Scholar 

  • Underwood, B. J. (1969). Attributes of memory. Psychological Review, 76(6), 559–573.

    Article  Google Scholar 

  • Underwood, B. J. (1977). Temporal codes for memories: Issues and problems. Hillsdale: Erlbaum.

    Google Scholar 

  • Van Strien, N. M., Cappaert, N. L. M., & Witter, M. P. (2009). The anatomy of memory: An interactive overview of the parahippocampal-hippocampal network. Nature Reviews. Neuroscience, 10(4), 272–282. doi:10.1038/nrn2614.

    Article  PubMed  Google Scholar 

  • Whishaw, I. Q., Cassel, J. C., & Jarrad, L. E. (1995). Rats with fimbria-fornix lesions display a place response in a swimming pool: A dissociation between getting there and knowing where. The Journal of Neuroscience, 15(8), 5779–5788.

    PubMed  Google Scholar 

Download references

Acknowledgments

Recollections of the Kesner Lab

My (Chiba’s) memories of Ray Kesner’s lab in the context of graduate school surround the time of exciting theoretical advances, pushing the attribute model from a static to an active processing model. Daily candid exchanges were inspired by Ray’s openness to creatively and rigorously testing, rather than simply supporting his theories. Ray’s approach provided a platform for learning across several different labs working on similar questions. His genius for behavioral design and effervescence was contagious and as such all of us from that era inherited a portion of his passion and made his science part of our own. To our post-docs and students, there was nothing more inspiring than their first meal with Ray who is particularly facile at using restaurant condiments to represent all physical aspects of an experiment. The prize of the meal was the napkin covered with newly designed experiments to test the question of the evening. Each of us aspired to take at least some small aspect of Ray back to the lab. To Ray, we owe our intrinsic satisfaction from beautiful science; this is what makes a scientist for life and across many venues. What rich and perplexing lives he has given us. Thank you, Ray!

I (Chiba) also wish to acknowledge the late Dr. William H. Saufley II, a student of Underwood’s, who instilled my early desire to pursue science and directed me towards Ray’s Chapter in Learning and Memory: A Biological View (Eds. J L Martinez and R P Kesner 1986). This eye-catching book illuminated the path to Ray’s lab.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea A. Chiba PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rangel, L., Quinn, L., Chiba, A. (2016). Space, Time, and the Hippocampus. In: Jackson, P., Chiba, A., Berman, R., Ragozzino, M. (eds) The Neurobiological Basis of Memory. Springer, Cham. https://doi.org/10.1007/978-3-319-15759-7_3

Download citation

Publish with us

Policies and ethics