Advertisement

Pre-coding Design with Constellation Structures

  • Jianhua Lu
  • Xiaoming Tao
  • Ning Ge
Chapter
Part of the SpringerBriefs in Electrical and Computer Engineering book series (BRIEFSELECTRIC)

Abstract

As stated in Chap. 2, a typical transmission process in wireless communications may be described by mappings from information space to coding space, and finally to signal space. This signal space mapping process may be described in two aspects, namely, resource allocation and signal constellation design. In resource allocation, inappropriate usage of resource will introduce fading and interference, introducing structure errors (e.g., synchronization error, packet delineation loss) that lead to a severe degradation of the transmission signal. In order to avoid these errors, resource allocation needs to take advantage of multi-domain coordination (e.g., time, frequency and space) for optimization. In signal constellation design, optimized matching between the constellation and the characteristics of the channel is desired in order to approach the performance limit. In this chapter, we discuss this issue under the well-known multiple-input and multiple-output (MIMO) transmission framework. To be specific, the pre-coding design algorithm with constellation structures (quadrature phase-shift keying (QPSK), quadrature amplitude modulation (QAM), etc.) in MIMO systems is presented.

Keywords

MIMO Constellation Structured pre-coding design 

References

  1. 1.
    C. E. Shannon, “Communicntion in the presence of noise,” Proc I.R.E., 37, Jan. 1949, p. 10.Google Scholar
  2. 2.
    C. E. Shannon, “Probability of error for optimal codes in a Gaussian channel,” Bell System Technical Journal, vol. 37, no. 3, pp. 611–656, May 1959.CrossRefMathSciNetGoogle Scholar
  3. 3.
    F. Boccardi, F. Tosato, and G. Caire, “Precoding schemes for the MIMO-GBC,” in Proc. Int. Zurich Seminar on Commununications, Zurich, Switzerland, pp. 10–13, Feb. 2006.Google Scholar
  4. 4.
    A. Goldsmith, S. Jafar, N. Jindal, and S. Vishwanath, “Capacity limits of MIMO channels,” IEEE J. Sel. Aeras Commun., vol. 21, no. 5, pp. 684–702, Jun. 2003.CrossRefGoogle Scholar
  5. 5.
    G. Foschini, “Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas,” Bell labs technical journal, vol. 1, no. 2, pp. 41–59, 1996.CrossRefGoogle Scholar
  6. 6.
    T. Cover and J. Thomas, Elements of Information Theory, 2nd ed. New York:Wiley, 2006.Google Scholar
  7. 7.
    L. Collin, O. Berder, P. Rostaing, et al., “Optimal minimum distance-based precoder for MIMO spatial multiplexing systems,” IEEE Trans. Signal Process., vol. 52, no. 3, pp. 617–627, Mar. 2004.CrossRefMathSciNetGoogle Scholar
  8. 8.
    B. Vrigneau, J. Letessier, P. Rostaing, et al, “Extension of the MIMO precoder based on the minimum Euclidean distance: A cross-form matrix,” IEEE J. Sel. Signal Process., vol. 2, no. 2, pp. 135–146, Apr. 2008.CrossRefGoogle Scholar
  9. 9.
    Q. Ngo, O. Berder, and P. Scalart, ‘Minimum euclidean distance-based precoding for three-dimensional multiple input multiple output spatial multiplexing systems,” IEEE Trans. Wireless Commun., vol. 11, no. 7, pp. 2486–2495, July 2012.CrossRefGoogle Scholar
  10. 10.
    R. G. Gallager, Information theory and reliable communication. 1968.zbMATHGoogle Scholar
  11. 11.
    E. Biglieri, Coding for Wireless Channels. New York, NY: Springer, 2005.Google Scholar
  12. 12.
    D. Palomar, and Y. Jiang, MIMO Transceiver Design via Majorization Theory. Delft, The Netherlands: Now Publishers, 2006.Google Scholar
  13. 13.
    C. Xiao, Y. R. Zheng, and Z. Ding, “Globally optimal linear precoders for finite alphabet signals over complex vector Gaussian channels,” IEEE Trans. Signal Process., vol. 59, no. 7, pp. 3301–3314, Jul. 2011.CrossRefMathSciNetGoogle Scholar
  14. 14.
    D. Palomar and Y. Jiang, MIMO Transceiver Design via Majorization Theory. Now Publishers Inc., 2006.Google Scholar
  15. 15.
    S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University Press, 2004.Google Scholar
  16. 16.
    W. Zeng, Y. R. Zheng, M. Wang, and J. Lu, “Linear precoding for relay networks: a perspective on finite-alphabet inputs,” IEEE Trans. Wireless Commun., vol. 11, no. 3, pp. 1146–1157, Mar. 2012.CrossRefGoogle Scholar
  17. 17.
    P. Absil, R. Mahony, and R. Sepulchre, Optimization Algorithms on Matrix Manifolds. Princeton University Press, 2008.Google Scholar
  18. 18.
    J. H. Manton, “Optimization algorithms exploiting unitary constraints,” IEEE Trans. Signal Process., vol. 50, no. 3, pp. 635–650, Mar. 2002.CrossRefMathSciNetGoogle Scholar
  19. 19.
    R. Horn and C. Johnson, Matrix Analysis. Cambridge University Press, 1985.Google Scholar
  20. 20.
    Y. Ding, J. Zhang, and K. Wong, “The amplify-and-forward half-duplex cooperative system: Pairwise error probability and precoder design,” IEEE Trans. Signal Process., vol. 55, no. 2, pp. 605–617, Feb. 2007.CrossRefMathSciNetGoogle Scholar
  21. 21.
    Y. Ding, J. K. Zhang, and K. M. Wong, “Optimal precoder for amplify-and-forward half-duplex relay system,” IEEE Trans. Wireless Commun., vol. 7, no. 8, pp. 2890–2895, Aug. 2008.CrossRefGoogle Scholar
  22. 22.
    A. S. Behbahani, R. Merched, and A. M. Eltawil, “Optimizations of a MIMO relay network,” IEEE Trans. Signal Process., vol. 56, no. 10, pp. 5062–5073, Oct. 2008.CrossRefMathSciNetGoogle Scholar
  23. 23.
    R. Mo and Y. Chew, “Precoder design for non-regenerative MIMO relay systems,” IEEE Trans. Wireless Commun., vol. 8, no. 10, pp. 5041–5049, Oct. 2009.CrossRefGoogle Scholar
  24. 24.
    W. Zeng, C. Xiao, M. Wang, and J. Lu, “Linear precoding for finite-alphabet inputs over MIMO fading channels with statistical CSI,” IEEE Trans. Signal Process., vol. 60, no. 6, pp. 3134–3148, Jun. 2012.CrossRefMathSciNetGoogle Scholar
  25. 25.
    W. Zeng, C. Xiao, J. Lu, and K. B. Letaief, “Globally optimal precoder design with finite-alphabet inputs for cognitive radio networks,” IEEE J. Sel. Aeras Commun., vol. 30, no. 10, pp. 1861–1874, Nov. 2012.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Jianhua Lu
    • 1
  • Xiaoming Tao
    • 1
  • Ning Ge
    • 1
  1. 1.Department of Electronic EngineeringTsinghua UniversityBeijingChina

Personalised recommendations