Skip to main content

Pre-coding Design with Constellation Structures

  • Chapter
  • First Online:
Structural Processing for Wireless Communications

Part of the book series: SpringerBriefs in Electrical and Computer Engineering ((BRIEFSELECTRIC))

  • 543 Accesses

Abstract

As stated in Chap. 2, a typical transmission process in wireless communications may be described by mappings from information space to coding space, and finally to signal space. This signal space mapping process may be described in two aspects, namely, resource allocation and signal constellation design. In resource allocation, inappropriate usage of resource will introduce fading and interference, introducing structure errors (e.g., synchronization error, packet delineation loss) that lead to a severe degradation of the transmission signal. In order to avoid these errors, resource allocation needs to take advantage of multi-domain coordination (e.g., time, frequency and space) for optimization. In signal constellation design, optimized matching between the constellation and the characteristics of the channel is desired in order to approach the performance limit. In this chapter, we discuss this issue under the well-known multiple-input and multiple-output (MIMO) transmission framework. To be specific, the pre-coding design algorithm with constellation structures (quadrature phase-shift keying (QPSK), quadrature amplitude modulation (QAM), etc.) in MIMO systems is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C. E. Shannon, “Communicntion in the presence of noise,” Proc I.R.E., 37, Jan. 1949, p. 10.

    Google Scholar 

  2. C. E. Shannon, “Probability of error for optimal codes in a Gaussian channel,” Bell System Technical Journal, vol. 37, no. 3, pp. 611–656, May 1959.

    Article  MathSciNet  Google Scholar 

  3. F. Boccardi, F. Tosato, and G. Caire, “Precoding schemes for the MIMO-GBC,” in Proc. Int. Zurich Seminar on Commununications, Zurich, Switzerland, pp. 10–13, Feb. 2006.

    Google Scholar 

  4. A. Goldsmith, S. Jafar, N. Jindal, and S. Vishwanath, “Capacity limits of MIMO channels,” IEEE J. Sel. Aeras Commun., vol. 21, no. 5, pp. 684–702, Jun. 2003.

    Article  Google Scholar 

  5. G. Foschini, “Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas,” Bell labs technical journal, vol. 1, no. 2, pp. 41–59, 1996.

    Article  Google Scholar 

  6. T. Cover and J. Thomas, Elements of Information Theory, 2nd ed. New York:Wiley, 2006.

    Google Scholar 

  7. L. Collin, O. Berder, P. Rostaing, et al., “Optimal minimum distance-based precoder for MIMO spatial multiplexing systems,” IEEE Trans. Signal Process., vol. 52, no. 3, pp. 617–627, Mar. 2004.

    Article  MathSciNet  Google Scholar 

  8. B. Vrigneau, J. Letessier, P. Rostaing, et al, “Extension of the MIMO precoder based on the minimum Euclidean distance: A cross-form matrix,” IEEE J. Sel. Signal Process., vol. 2, no. 2, pp. 135–146, Apr. 2008.

    Article  Google Scholar 

  9. Q. Ngo, O. Berder, and P. Scalart, ‘Minimum euclidean distance-based precoding for three-dimensional multiple input multiple output spatial multiplexing systems,” IEEE Trans. Wireless Commun., vol. 11, no. 7, pp. 2486–2495, July 2012.

    Article  Google Scholar 

  10. R. G. Gallager, Information theory and reliable communication. 1968.

    MATH  Google Scholar 

  11. E. Biglieri, Coding for Wireless Channels. New York, NY: Springer, 2005.

    Google Scholar 

  12. D. Palomar, and Y. Jiang, MIMO Transceiver Design via Majorization Theory. Delft, The Netherlands: Now Publishers, 2006.

    Google Scholar 

  13. C. Xiao, Y. R. Zheng, and Z. Ding, “Globally optimal linear precoders for finite alphabet signals over complex vector Gaussian channels,” IEEE Trans. Signal Process., vol. 59, no. 7, pp. 3301–3314, Jul. 2011.

    Article  MathSciNet  Google Scholar 

  14. D. Palomar and Y. Jiang, MIMO Transceiver Design via Majorization Theory. Now Publishers Inc., 2006.

    Google Scholar 

  15. S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University Press, 2004.

    Google Scholar 

  16. W. Zeng, Y. R. Zheng, M. Wang, and J. Lu, “Linear precoding for relay networks: a perspective on finite-alphabet inputs,” IEEE Trans. Wireless Commun., vol. 11, no. 3, pp. 1146–1157, Mar. 2012.

    Article  Google Scholar 

  17. P. Absil, R. Mahony, and R. Sepulchre, Optimization Algorithms on Matrix Manifolds. Princeton University Press, 2008.

    Google Scholar 

  18. J. H. Manton, “Optimization algorithms exploiting unitary constraints,” IEEE Trans. Signal Process., vol. 50, no. 3, pp. 635–650, Mar. 2002.

    Article  MathSciNet  Google Scholar 

  19. R. Horn and C. Johnson, Matrix Analysis. Cambridge University Press, 1985.

    Google Scholar 

  20. Y. Ding, J. Zhang, and K. Wong, “The amplify-and-forward half-duplex cooperative system: Pairwise error probability and precoder design,” IEEE Trans. Signal Process., vol. 55, no. 2, pp. 605–617, Feb. 2007.

    Article  MathSciNet  Google Scholar 

  21. Y. Ding, J. K. Zhang, and K. M. Wong, “Optimal precoder for amplify-and-forward half-duplex relay system,” IEEE Trans. Wireless Commun., vol. 7, no. 8, pp. 2890–2895, Aug. 2008.

    Article  Google Scholar 

  22. A. S. Behbahani, R. Merched, and A. M. Eltawil, “Optimizations of a MIMO relay network,” IEEE Trans. Signal Process., vol. 56, no. 10, pp. 5062–5073, Oct. 2008.

    Article  MathSciNet  Google Scholar 

  23. R. Mo and Y. Chew, “Precoder design for non-regenerative MIMO relay systems,” IEEE Trans. Wireless Commun., vol. 8, no. 10, pp. 5041–5049, Oct. 2009.

    Article  Google Scholar 

  24. W. Zeng, C. Xiao, M. Wang, and J. Lu, “Linear precoding for finite-alphabet inputs over MIMO fading channels with statistical CSI,” IEEE Trans. Signal Process., vol. 60, no. 6, pp. 3134–3148, Jun. 2012.

    Article  MathSciNet  Google Scholar 

  25. W. Zeng, C. Xiao, J. Lu, and K. B. Letaief, “Globally optimal precoder design with finite-alphabet inputs for cognitive radio networks,” IEEE J. Sel. Aeras Commun., vol. 30, no. 10, pp. 1861–1874, Nov. 2012.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Lu, J., Tao, X., Ge, N. (2015). Pre-coding Design with Constellation Structures. In: Structural Processing for Wireless Communications. SpringerBriefs in Electrical and Computer Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-15711-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15711-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15710-8

  • Online ISBN: 978-3-319-15711-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics