Skip to main content

Solidification of Single-Phase Alloys; Cells and Dendrites

  • Chapter
  • First Online:
Science and Engineering of Casting Solidification
  • 3611 Accesses

Abstract

In the preceding discussion we have not concerned ourselves with the morphology of the solid/liquid (S/L) interface. For calculation purposes it has been considered to be reasonably smooth. However, this is seldom the case in solidification of castings. It will be demonstrated that the thermal and compositional field ahead of the solidifying interface determines its morphology. If such influences are not considered, there is no reason for the interface to lose its planar morphology and become unstable. To evaluate the evolution of interface morphology, interface stability arguments are used. A perturbation is assumed to form at the interface. Then, if the perturbation is damped out in time, the interface is considered to be stable. If the perturbation is amplified in time, the interface is unstable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Reffrerences

  • Akamatsu S, Faivre G, Ihle Th (1995) Phys. Rev. E51:4751–4773

    Google Scholar 

  • Ananth R, Gill WN (1988) J. Crystal Growth 91:587

    Article  Google Scholar 

  • Ardell AJ (1972) Acta Metall. 20:61

    Google Scholar 

  • Barbieri A, Langer JS (1989) Physical Review A 10:5314–5325

    Google Scholar 

  • Bensimon D, Pelce P, Shraiman B I (1987) J. Phys. A 48:2081

    Google Scholar 

  • Biloni H, Boettinger WJ (1996) in: Cahn RW, Haasen P (eds) Physical Metallurgy, fourth edition. Elsevier Science BV p 670

    Google Scholar 

  • Boden S, Eckert S, Willers B, Gerbeth G (2008) Metall. Mater. Trans. A 39A:613–623

    Google Scholar 

  • Boettinger WJ, Coriell SR, Trivedi R (1988), in: Mehrabian R, Parrish PA (eds) Rapid Solidification Processing: Principles and Technologies. Claitor’s Publishing, Baton Rouge, LA p 13

    Google Scholar 

  • Bouchard D, Kirkaldy JS (1997) Metall. and Mater. Trans. 28B:651

    Google Scholar 

  • Burden NH, Hunt JD (1974) J. Cryst. Growth 22

    Google Scholar 

  • Chai G, Bäckerud L, Roland T, Arnberg L (1995) Metall. and Mater. Trans. 26A:965–970

    Google Scholar 

  • Chalmers B (1963) J. Aust. Inst. Met. 8:225

    Google Scholar 

  • Chernov AA (1956) Kristallographya 65:583

    Google Scholar 

  • Cohen M, Flemings MC (1985) in: Das SK, Kear BH, Adam CM (eds) Rapidly Solidified Crystalline Alloys. TMS, Warrendale, PA p 3

    Google Scholar 

  • Coriell SR, Cordes MR, Boetinger WJ, Sekerka RF (1980) J. Crystal Growth 49:22

    Article  Google Scholar 

  • Curreri P, Kaukler WF (1996) Metall. Mater. Trans. A 27A:801–808

    Google Scholar 

  • Diepers HJ, Beckerman C, Steinbach I (1999) Acta Mater. 47(13):3663–78

    Google Scholar 

  • Dupouy MD, Camel D, Botalla F, Abadie J, Favier JJ (1998) Microgravity sci. technol. XI(1):2

    Google Scholar 

  • Easton M, Davidson C, St John D (2010) Metall. Mater. Trans. A 41A:1528

    Google Scholar 

  • Elliott R (1983) Eutectic Solidification Processing. Butterworths, London

    Google Scholar 

  • Esaka H, Kurz W (1985) J. Cryst. Growth 72:578–84

    Google Scholar 

  • Flemings MC, Kattamis TZ, Bardes BP (1991) AFS Trans. 99:501

    Google Scholar 

  • Flood SC, Hunt JD (1990) Columnar to Equiaxed Transition. In: Stefanescu DM (ed) ASM Handbook vol. 15 Casting, ASM International, Ohio 130–136

    Google Scholar 

  • Glicksman ME, Koss MB, Bushnell LT, Lacombe JC, Winsa EA (1995) ISIJ International 35:604

    Google Scholar 

  • Glicksman ME (2012) Metall. and Mater. Trans. 43A:391

    Google Scholar 

  • Guo X, Stefanescu DM (1992) AFS Trans. 100:273

    Google Scholar 

  • Huang SC, Glicksman ME (1981) Acta Metall. 29:701

    Google Scholar 

  • Hunt JD (1979) in: Solidification and Casting of Metals, The Metals Society, London p 3

    Google Scholar 

  • Hunt JD (1984) Mat. Sci. and Eng. 65:75

    Google Scholar 

  • Hunt JD, Jackson KA (1966) Trans. Met. Soc. AIME 236:843

    Google Scholar 

  • Huntley DA, Davis SH (1993) Acta metal. mater. 41:2025

    Google Scholar 

  • Ivantsov GP (1947) Doklady Akademii Nauk SSSR 58:695

    Google Scholar 

  • Jackson KA, Hunt JD, Uhlmann D, Seward TP (1966) Trans. AIME 236:149

    Google Scholar 

  • Kattamis TZ, Flemings MC (1965) Trans. Met. Soc. AIME 233:992

    Google Scholar 

  • Kessler DA, Levine H (1986) Phys. Rev. Lett. 57:3069

    Google Scholar 

  • Kirkwood DH (1985) Mat. Sci. Eng. 73:L1–L4

    Google Scholar 

  • Koseki T, Flemings MC (1995) ISIJ International 35:611

    Google Scholar 

  • Kundin J, Rrezende JLL, Emmerich H (2014) Metall. Mater. Trans. 45A:1068

    Google Scholar 

  • Kurz W, Fisher DJ (1981) Acta Metall. 29:11–20

    Google Scholar 

  • Kurz W, Giovanola B, Trivedi R (1986) Acta Metall. 34:823

    Google Scholar 

  • Kurz W, Fisher DJ (1989) Fundamentals of Solidification, 3rd ed. Trans Tech Publications, Switzerland

    Google Scholar 

  • Langer J S, Müller-Krumbhaar H (1978) Acta Metall. 26:1681

    Google Scholar 

  • Laxmanan V (1987) J. Crystal Growth 83:391

    Article  Google Scholar 

  • Lipton J, Glicksman ME, Kurz W (1984) Mat. Sci. Eng. 65:57

    Google Scholar 

  • Liu S, Lu SZ, Hellawell A (2002) J. Crystal Growth 234:740–750

    Google Scholar 

  • Lu SZ, Liu S (2007) Metall. and Mater. Trans. 38A:1378–1387

    Google Scholar 

  • Lux B, Minkoff I, Mollard F, Thury E (1975) Branching of graphite crystals growing from a metallic solution. In: Lux B, Minkoff I, Mollard F (eds) The Metallurgy of Cast Iron. Georgi Publ. Co., St Saphorin, Switzerland p 497–508

    Google Scholar 

  • Mathiesen RH, Arnberg L, Bleuet P, Somogyi A (2006) Metall. Mater. Trans. A 37A:2515–2524

    Google Scholar 

  • Mahapatra RB, Weinberg F (1987) Metall. Trans. B 18B:425

    Google Scholar 

  • Mendoza R, Alkemper J, Voorhees PW (2003) Metall. and Mater. Trans. 34A:481

    Google Scholar 

  • Miyata Y (1995) ISIJ International 35:600

    Google Scholar 

  • Morris LR, Winegard WC (1969) J. Crystal Growth 6:61

    Article  Google Scholar 

  • Mullins WW, Sekerka RF (1964) J. Appl. Phys. 35:444

    Google Scholar 

  • Mortensen A (1991) Metall. Trans. 22A:569

    Google Scholar 

  • Nash GE, Glicksman ME (1974) Acta Metall. 22:1283

    Google Scholar 

  • Nastac L, Stefanescu DM (1993) Metall. Trans. 24A:2107

    Google Scholar 

  • Nastac L, Stefanescu DM (1996) Metall. Trans. 27A:4061

    Google Scholar 

  • Nastac L, Chou JS, Pang Y (1999) in: Symp. Liquid Metal Processing and Casting, Santa Fe, New Mexico

    Google Scholar 

  • O’Hara S, Tiller WA (1967) Trans. AIME 239:497

    Google Scholar 

  • Papapetrou A (1935) Z. Kristall. 92:89

    Google Scholar 

  • Rappaz M, Boettinger WJ (1990) Acta Mater. 47(11):3205–3219

    Google Scholar 

  • Ratke L (2009) Int. J. Cast Metals Res. 22(1–4):268

    Article  Google Scholar 

  • Ratke L, Thieringer W (1985) Acta Metall. 33(10):1793–1802

    Google Scholar 

  • Reinhart G, Mangelinck-Noel N, Nguyen-Thi H, Schenk T, Gastaldi J, Billia B, Pino P, Hartwig J, Baruchel J (2005) Mater. Sci. Eng. A 413–414:384

    Google Scholar 

  • Ruvalcaba D, Eskin DG, Mathiesen RH, Arnberg L, Katgerman L (2009) Int. J. Cast Metals Res. 22(1–4):271

    Article  Google Scholar 

  • Spittle JA (2006) Int. Materials Reviews 51(4):247

    Article  Google Scholar 

  • Steinbach S, Ratke L (2005) Mater. Sci. Eng. A 413–414:200–04

    Google Scholar 

  • Tian H, Stefanescu DM (1992) Metall. Trans. 23A:681

    Google Scholar 

  • Tiller WA (1962) Trans. Met. Soc. AIME 224:448

    Google Scholar 

  • Trivedi R. Somboonsuk K (1984) Mat. Sci. and Eng. 65:65–74

    Google Scholar 

  • Trivedi R, Kurz W (1988) Solidification of Single Phase Alloys. In: Stefanescu DM (ed) Metals Handbook Ninth Edition vol. 15 Casting. ASM International, Metals Park, Ohio p 115–119

    Google Scholar 

  • Trivedi R, Kurz W (1994) International Materials Reviews 39,2:49

    Google Scholar 

  • Trivedi R, Shen YX, Liu S (2003) Metall. Mater. Trans. 34A:395

    Google Scholar 

  • Ullah MW, Carlberg T (2011) J. Crystal Growth 318:212–218

    Google Scholar 

  • Voorhees PW, Glicksman EM (1984) Metall. Trans. 15A:1081

    Google Scholar 

  • Winegard WC, Chalmers B (1954) Trans. ASM. 216:1214

    Google Scholar 

  • Yasuda H, Ohnaka I, Kawasaki K, Sugiyama A, Ohmichi T, Iwane J, Umetani K (2004) J. Cryst. Growth 262:645–652

    Google Scholar 

  • Yasuda H, Yamamoto Y, Nakatsuka N, Yoshiya M, Nagira T, Sugiyama A, Ohnaka I, Uesugi K, Umetani K (2009) Int. J. Cast Metals Res. 22(1–4):15

    Article  Google Scholar 

  • Young KP, Kirkwood DH (1975) Metall. Trans. 6A:197

    Google Scholar 

  • Zhu P, Smith RW (1992) Acta metall. mater. 40:683 and 3369

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doru Michael Stefanescu .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Stefanescu, D. (2015). Solidification of Single-Phase Alloys; Cells and Dendrites. In: Science and Engineering of Casting Solidification. Springer, Cham. https://doi.org/10.1007/978-3-319-15693-4_9

Download citation

Publish with us

Policies and ethics